A Scalable Object Store for Meteorological and Climate Data

Simon Smart, Tiago Quintino, Baudouin Raoult

ECMWF

simon.smart@ecmwf.int

European Centre for Medium Range Weather Forecasts (ECMWF)

What do we do?

Operational forecasts – Time Critical

- 2 hours from satellite cut-off to deliver forecast products
- Twice per day, 00Z and 12Z

Research – Non Time Critical

- Large part of the workload
- Re-uses current and historic analysis and forecast data

Central trade-off

- **Performance**, minimise the time to solution, maximise throughput
- Reliability, minimise the worst-case runtime

ECMWF's Production Workflow

Estimated Growth in Model IO

2015	2020
16km, 137 levels	Increase: 2 horizontal, 1 upper ai
Time critical	Time critical
 21 TB/day written 	 128 TB/day written
22 Million fields	90 Million fields
 85 Million products 	 450 Million products
 11 TB/day send to customers 	 60 TB/day send to customers

Non-time critical

- 100 TB/day archived
- 400 research experiments
- 400,000 jobs / day

Non-time critical

- 1 PB/day archived
- 1000 research experiments

What is the FDB Today?

/rootpath/

database-dir/

Carefully named directories of related data

What are the issues with todays FDB?

- Consistency must be explicitly managed in parallel
- Not transactional. Poor behavior on failure.
- Poor traceability

Trading consistency for performance incurs a human cost.

Object Store

- Key-Value stores offer scalability
 - Just add more instances to increase capacity and throughput
- Transactional behaviour with minimal synchronization
- Growing popularity, namely due to Big Data Analytics

Key: date=12012007, param=temp

Value: 101001...1001010101010010

But ECMWF has been using key-value store for 30 years...

MARS

MARS Language

RETRIEVE,			RETRIEVE,			
CLASS	=	OD,		CLASS	=	RD,
TYPE	=	FC,		TYPE	=	FC,
LEVTYPE	=	PL,		LEVTYPE	=	PL,
EXPVER	=	0001,		EXPVER	=	ABCD,
STREAM	=	OPER,		STREAM	=	OPER,
PARAM	=	Z/T,		PARAM	=	Z/T,
TIME	=	1200,		TIME	=	1200,
LEVELIST	=	1000/500,		LEVELIST	=	1000/500,
DATE	=	20160517,		DATE	=	20160517,
STEP	=	12/24/36		STEP	=	12/24/36

Unique and semantic way to describe all ECMWF data

What is the relationship between the FDB and MARS?

Application controlled HSM with archive

Schemas, appending and write performance

1. Segregate data into logically independent (re-runnable) units

```
# Ensemble forecast
[ class forecast
[ class, explored forecast
[ type, levtype
[ step, Minimum 35 / second
```

2. Cheat ...

* From 8 competing nodes, on operational Lustre filesystems at ECMWF

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

/rootpath/ experiment/date-time/stream/

Reading from the FDB5?

- Data transfer is similar to existing FDB. Like for like replacement
 - Limited by bulk movement of data from disk.

No. Fields	Current FDB (fa	stest / slowest)	FDB5 (fastest / slowest)		
1	0.42	0.61	0.28	3.34	
10	0.75	8.90	0.8	4.07	
100	2.57	20.61	1.28	30.34	
1000	23.53	533.97	6.95	418.59	
10000	1989.38	2,053.75	2,289.28	2,469.92	
100000	> 170,000 (max v	walltime)	33,846	51,777.49	

- Performance worse until sub-TOCs are masked.
- Sensitive to filesystem caching.
- For real requests, generally hardware bound

New opportunities to adapt data workflows

New memory technologies are coming soon

3D XPoint is coming soon

- Storage density similar to NAND flash memory
- Better durability than flash
- Speed and latency between NAND and DRAM
- Priced between NAND and DRAM

Source: https://en.wikipedia.org/wiki/3D_XPoint

Many questions

- How much will be affordable
- Likely not on every node
 - How do we distribute it, and access it remotely

"3D XPoint" by Trolomite Own work. Licensed under CC BY-SA 4.0

Storing and accessing dense meteorological data

Byte Addressable Hypercubes

- Longitude (3600)
- Latitude (1800)
- Atmospheric levels, Physical parameters (~200)
- Time steps (~100)
- Probabilistic perturbations (50)

@ double precision

- 9km 48 TiB
- 5km 192 TiB
- 1.25km 1.82 PiB

Not included: historical observations, multiple models, etc...

Data Centric Computing

- **Producer-Consumer** model, where *HPC* is producer
- Use data while is hot
- Bring users to the data, ship *functions*
- Don't use files, use science to communicate, use rich metadata
- Need to build shared components amongst the communities...

ECMWF

Part of ECMWF's Scalability Programme

- Large buffers for time critical applications
 - Can store entire model output in "memory"
 - Similar to burst buffers but in application space
- Persistence until archival, for non time critical
 - adding a new layer in the hierarchical storage system view
- New workloads
 - Bring computation to the data for in-situ analytics.

Partners

- EPCC (Proj. Leader)
- Intel
- Fujitsu
- T.U. Dresden
- Barcelona S.C.
- Allinea Software
- ARCTUR
- ECMWF

http://www.nextgenio.eu - EU funded H2020 project, runs 2015-2018

Messages to take home

FDB5 future-proofs our storage stack

- Consistent, transactional parallel access
- Hardware limited performance

Multiple engines permit new usage patterns, and new ways of working

- Data pipelines
- In-situ data processing

NVRAM is coming

- We/you need to adapt

NEXTGenIO has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement no. 671951

