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HTCC overview



The LHCb data acquisition (DAQ) system

• Data comes at a rate of 30 MHz

• A throughput of 40 Tbit/s needs to be processed in real-time

• All data will be processed in software
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High Throughput Computing Collaboration (HTCC)

Apply upcoming Intel R© technologies in an Online computing context at the Large Hadron

Collider

• Data acquisition (DAQ) and event building

• Accelerator assisted decision taking on collected data

Use LHCb upgrade as an example, but applicable and useful for other experiments too!
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LHCb DAQ architecture using Intel R©

EB farm
I Intel R© Xeon R©

I Intel R© Xeon R© + FPGA

w/ Intel R© Omni-Path Architecture

I Intel R© Xeon PhiTM w/ Intel R© Omni-Path Architecture

EB network
I Intel R© Omni-Path Architecture

EF network
I Intel R© Omni-Path Architecture and / or 100 GbE

EF farm
I Intel R© Xeon R©

I Intel R© Xeon R© + FPGA

I Intel R© Xeon PhiTM
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The network challenge



Event building network topology

Work with 4 units:

• Readout unit (RU) to read data from PCI-E readout board

• Builder unit (BU) to merge data from RU and send to filter unit

• Filter unit (FU) to select the interesting data (not considered here)

• Event manager (EM) to dispatch the work over BUs (credits)

RU / BU perform allgather communication operations to aggregate the data chunks

from each collision
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IO nodes hardware

Three IO boards at 100 Gb/s per node:

• PCI-40 for fiber input

• Event building network

• Output to filter farm

Handling these communications stresses the memory, requiring 400 Gb/s of total traffic

per node
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DAQPIPE

A benchmark to evaluate event building solutions

• Provides EM / RU / BU units

Support various APIs

• MPI

• libfabric

• PSM2

• Verbs

• TCP / UDP

• RapidIO

Manage communication scheduling models

• Barrel shift ordering (with N on-fly)

• Random ordering (with N on-fly)

• Send all in one go 10



DAQPIPE (2)

Three message sizes on the network

• Command 64 B

• Metadata 10 KB

• Data 1 MB

Configurable parameters

• Message size (512 KB / 1 MB)

• Number of pending gather (credits)

• Active connections by gather

• Processes per node

11



Barrel shift

In order to avoid congestion, a variant is to synchronously send data to predetermined

receivers, with a configurable shift. Similar discussion as in [1].

12



Micro-benchmarks on Intel R© Omni-Path Architecture
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Scaling on Infiniband
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The software challenge



Status of LHCb codebase

More than 5 MLOCs of C++ (and some Python)

• Under redesign

for SIMD and shared-mem parallelism

• Baseline remains Xeon R© CPUs

• New

framework uses TBB to dispatch algorithms

to process events in a multi-threaded fashion

• Possible avenues to accelerate algorithms:

• Offload critical functions to FPGA

• Rewrite most time-consuming algorithms in

a parallel fashion and use Xeon PhiTM
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The Kalman filter

The most time consuming algorithm, taking 60% of the time in the Online reconstruc-

tion, is the Kalman filter. The Kalman filter is a well-known linear quadratic estimator.

For every particle node,

• Predict - The state of the system is projected according to a given model

• Update - The state is adjusted taking into account a measurement
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Cross Kalman

We have developed a cross-architecture Kalman filter, targeting SIMD architectures.

Our design considers three key components:

• Control flow

• Data structures

• Arithmetic backend
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Control flow

Every particle can be considered a succession of nodes with an implicit computing or-

der. Given that we receive hundreds of particle trajectories as an input, we are given

the scheduling problem of assigning particle nodes to processors, where we attempt to

minimize the number of computing iterations.

This problem is a variant of the number partitioning problem Npp, which is NP-

complete 1.

Nevertheless, a Decreasing Time Algorithm (DTA) behaves well as a scheduling algo-

rithm.

1Mertens S.: The Easiest Hard Problem: Number Partitioning. Computational Complexity and

Statistical Physics, 125(2), 125-139 (2003)
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Control flow (2)

We use a static scheduler

• Data locality is maximized

• Data is guaranteed to be aligned

it in out act vector (#particle-#node)

#540: 0000 0001 1111 { 112-9 80-11 81-11 113-10 }

#541: 0001 1110 1111 { 112-10 80-12 81-12 79-3 }

#542: 1110 0000 1111 { 107-2 109-1 108-2 79-4 }

#543: 0000 0000 1111 { 107-3 109-2 108-3 79-5 }

#544: 0000 0000 1111 { 107-4 109-3 108-4 79-6 }
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Data structures

We use a static scheduler

• Data locality is maximized

• Data is guaranteed to be aligned

• Data is AOSOA ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x0 x1 x2 x3

y0 y1 y2 y3

tx0 tx1 tx2 tx3

ty0 ty1 ty2 ty3
q

p 0

q

p 1

q

p 2

q

p 3

σ0,0 σ1,0 σ2,0 σ3,0

...
...

...
...

σ0,14 σ1,14 σ2,14 σ3,14

χ2
0 χ2

1 χ2
2 χ2

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
20



Arithmetic backend

The bulk of the math of the application is written in an architecture-aware programming

extension / library,

• VCL

• UMESIMD

• OpenCL

• CUDA
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Speedup
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Scalability
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2x Intel Xeon CPU E5-2630 v3

4x Intel Xeon CPU E7-8890 v3

2x Intel Xeon CPU E5-2683 v4

Intel Xeon Phi CPU 7210

2x PowerNV 8335-GCA

Cavium ThunderX Dual 48 Core (ARM64)
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Vector width effect
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Single precision test

Double precision test

• Tests performed on an Intel R© Xeon PhiTM 7210

• Single precision results show a 1% deviation wrt. expected results

24



Roofline model
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Conclusions



Conclusions

The LHCb DAQ faces a test in the upcoming years

• Network, software, storage, ...

We are currently evaluating network technologies and hardware architectures that fulfill our

requirements

• 500-node farm with sustained 100 Gb/s bidirectional bandwidth, all-to-all traffic pattern

• Reconstruction software and farm capable of processing 40 Tbit/s of data

We have shown good cross-architecture performance of the main contributor to the software

reconstruction

• There is no one-fits-all solution, if one requires best performance. As of now, each

architecture requires a slightly different approach

• Many-core architectures are an option only if the framework and algorithms are prepared to

take advantage of it
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