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Context: resilient solving of PDEs for problems in engineering.
» Algorithm based approach.
General overview

» Server-client architecture:
» Clusters of MPI ranks (e.g. node).

» Few (protected against faults).

» Many (subject to faults): computing units.

» Task-based approach: send tasks to . o rank
» Domain decomposition for PDEs: siiws clent

» Global domain divided into many small subdomains. O cluster

» Local problems (on subdomains) very cheap to solve.
» Sampling approach:

» Sample local problems on the (unprotected).
» Robust regression to overcome faulty or missing data.
» Global reconstruction on the (protected).
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° Overview — overlapping subdomains
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[ Overview — minimization problem
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] Overview — minimization problem

Focusing on Q(1):

Q)

Sampling approach:

-----
“

~
inputs: x obs.: y

= {0 (]}
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~
model resp.: F(1)(x)

Minimization problem: F(!) — arg min z

y — f‘(l)(x)H, for some norm || - ||.
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. / Outline

1d linear example

A priori bounds of (2d) PDE solutions
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1d linear example

A priori bounds of (2d) PDE solutions
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° Affine mapping

Problem description:

we want to solve the following (1d) problem
Lu=g, inQ=(0,1)
u(0) =u",
u(l) = ut,

where L is a linear, elliptic operator.
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Problem description:
we want to solve the following (1d) problem

Lu=g, inQ=(0,1)
u(0) =u",
u(l) = ut,

where L is a linear, elliptic operator.
The solution at point xg is an affine function of the boundary conditions:

u(zo) = f(u™,uT) =a+bu” + cu™.
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[ N Domain decomposition overview
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] Domain decomposition overview
¢ L]
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m Known boundary value o Unknown boundary value

x Subdomain solution at inner point of interest
The subproblem is solved on each subdomain:

Lyl =g, inQy= (Xd_,X;)

vd(Xd_) =uh—,

v (X)) = ubt,
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] Domain decomposition overview
¢ L ]
Uo ut™ vI(X 1) v(Xg,) uht Uy
O
ud—l.+ ud+1.—
Qg1 Qa1
T
= in =
0 Xg KXo Xoo X7 1
= Known boundary value e Unknown boundary value

x Subdomain solution at inner point of interest
The subproblem is solved on each subdomain:
Lvl=yg, inQq=(X;,X])
vd(Xd_) =uh—,
vd(X:[) =y,
Enforcing compatibility conditions ensures that v% agrees with u:
Ud(X:lr—l) =ud=bt,
Ud(X;+1) — ud"'lv_.
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Using the affine maps yields a linear system

The compatibility conditions read:
,Ud(X:lr_l) — “rl 1,4 )
,Ud(Xd—+1) — “(/+l.7.
We recall the affine maps
,Ud(X:l—_l) _ fd’_(ud’_,ud”*) _ ad,— + bd,—ud,— + cd,—ud.+
v (X)) = fET T uh ) = ettt 4 ettt

Using these maps, the compatibility conditions become:

)

CLd’_ + bd’_ud** + Cd,—,ud,+ = d-1.+
ad,+ 4 bd,+u(],— 4 Cd,+ud,+ — “(/\ 1,

Yields a linear system Mur = c.
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° Using the affine maps yields a linear system

The compatibility conditions read:

,Ud(X:lr_l) — “r/ 1,4 )
v

dixy— ) — ,dt1,—
(X)) = uf i
We recall the affine maps < regression

,Ud(X:l—_l) _ fd’_(ud’_,ud”*) _ ad,— + bd,—ud,— + cd’_ud’+

vd(XJJrl) _ fd,-&-(u/(l.f’udﬁr) — ad,+ 4 bd’+14d” + Cd’+7bd’+

Using these maps, the compatibility conditions become:

ad™ + bbmud T b mydt = g
ad,+ 4 bd,+ur],— 4 Cd,+ud,+ _ “(/\ 1,

Yields a linear system Mur = c.

Z CERFACS

6/19



>(A Using regression to find a, b and ¢

The map f has the general form:
flu,ut)=a+bu +cu',
Sampling approach:

» Sample the BCs = (u; ,u;)
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>(A Using regression to find a, b and ¢

The map f has the general form:
flu,ut)=a+bu +cu',

Sampling approach:

» Sample the BCs = (u; ,u;)

» Collect map values f; for BCs (u; ,u;).

A
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] Using regression to find a, b and ¢

The map f has the general form:

flw ,ut)=a+bu" +cut,
Sampling approach:
i)

» Sample the BCs = (u; ,u
» Collect map values f; for BCs (u; ,u;).

1 K2

» Distance between the observed and modeled map values:

rizfif(aerui_Jrcu;').
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] Using regression to find a, b and ¢

The map f has the general form:

flw ,ut)=a+bu" +cut,
Sampling approach:
i)

%

» Sample the BCs = (u; ,u
» Collect map values f; for BCs (u; ,u;).

1 K2

» Distance between the observed and modeled map values:
ri = fi — (aerui_Jrcuj').

» Minimize this distance in some sense = regression.

Z CERFACS 7/19



° Using (robust) regression to achieve resilience

The regression problem amounts to minimizing the residuals:
r=y—Xg, withg=(a,b0).
» Goal: determine a, b and ¢ from limited number of observations y;.
» Each y; may be corrupted by a bit-flip (with small probability):

Yi = fi + €ftip, éqip is not Gaussian!
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° Using (robust) regression to achieve resilience

The regression problem amounts to minimizing the residuals:

r=y—Xg, withg=(a,b0).

v

Goal: determine a, b and ¢ from limited number of observations y;.

v

Each y; may be corrupted by a bit-flip (with small probability):

Yi = fi + €ftip, éqip is not Gaussian!

v

Least squares (LS) regression is not adapted:

J(B) =y = XB[3 = > (v: — Xi8)° .

Solve least absolute deviations (LAD) regression instead:

J(B) =y =XB1 =Xy — X0

v
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] Resilient regression: LS vs. LAD

Least squares (LS) vs. Least absolute deviations (LAD):

5.0
® @ Observations
4.5 — Least squares
aoll— Least absolute deviations
3 cdrrupted
i data point
> 3.0
[ ]
2.5 /
2.0
1.5¢
105G —05 0.0 05 1.0
X

Figure: Regression with single corrupted point

fo-"norm’ of a vector = number of non-zero entries.
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Algorithm overview:
1. Resilient map construction (on each subdomain):

» Sample boundary conditions.
» Solve PDE for each sample.
» Build the left and right maps using resilient regression.

2. Assemble and solve the linear system = solution at interfaces.
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Algorithm overview:
1. Resilient map construction (on each subdomain):

» Sample boundary conditions.
» Solve PDE for each sample.
» Build the left and right maps using resilient regression.

2. Assemble and solve the linear system = solution at interfaces.

References:
» Validated in 1D

» Validated in 2D with scalability measurements

> On 110,000 cores with a 90% parallel efficiency;
> Small overhead caused by faults.
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Outline

A priori bounds of (2d) PDE solutions
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] Continuous a priori bounds

Theorem (see, e.g. icibers & Trudinger)

» Let Q < RP be an open bounded domain with
boundary 02 and closure ). Q

» Assume that () lies between two parallel planes )
separated by a distance H.

» Let L be a second2order elliptic operator of the form:

+ b (x) 0ui +ec(X)u, ¢ <0, YueC’Q)nC* ).

u
Lu=af () 5525 oz

» Let ue C°(Q) n C%(Q) be such that Lu = f in Q.

» Then:

sup\u| sup|u| + C’sup =" 1, y=1+s p /\

where \(x) is the minumum eigenvalue of the matrix [a% (x)].
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° Discrete elliptic problem — notations

Grid definition (xx = (z},...,zf) € RP):

» Qno={xeP, e =i+ s

» Qn = {xx}p,: interior points;

» 00, = {Xn;+k}r2,: boundary points.

Discrete elliptic Dirichlet problem of the augmented form Aa = b:

boundary matrix interior solution / source term

Interior matrix « \ ‘
T -l
0 I -
boundary solution \ boundary data
with the conditions (sufficient to ensure the discrete maximum principle (ciarlet, 19701):
» A is monotone, i.e. A™! > 0;
> The row sums of L=[A A% areall zero: 37 1i; =0 Vi=1,...,n.
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° Discrete a priori bounds
Theorem
» Let Qy, lie between two parallel planes (say, L e‘i) D D LD (D S S T
separated by a distance H. G G S G S S
» Let ae R™ be such that La = b, with b € R™ o o0 o0 oo
and L as defined previously. S D S G G G e X

» Let w = (w1, ..., wn,): R > R™ be defined by wi(a) = exp(ozxk) Vo € R.
» Assume there exists « = 0 and XA > 0 € R™ such that Lw(a) > X.

> Then: )
 in ug > min - Uy, +k—C max (|bk|//\k)

k<n; 1<k<ny
’ C=et 1.
 max g < max u + C maX b |/
k<n; = 1<k(<71] mitk <k< (l k |/ k)
Notation: for any scalar a € R, a~ = min{0,a} and a* = max{0, a}.
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° Discrete a priori bounds

Theorem

» Let Qy, lie between two parallel planes (say, L e‘i)

separated by a distance H.

o H

> Let € R™ be such that La=b, withbeR™
and L as defined previously. . . .

» Let w = (w1, ..., wn,): R > R™ be defined by wi(a) = exp(awk) Va € R.

» Assume there exists & = 0 and XA > 0 € R™ such that Lw(a) = X.

> Then: )
l1/11111 Up = min Up; 4k —C maX (|bk |/ k),

k<n; 1<k<ny
’ C=e_1.
max ur < max u + C | max b |/
1< J«(- n;i = 1<k<ny itk <k< (l k |/ k)
Notation: for any scalar a € R, a~ = min{0,a} and a* = max{0, a}.
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° Application to the diffusion equation

Diffusion equation with variable diffusion coefficient k£ (assumed differentiable):

D
_ _ d
Lu=V"[kVu] = Zle L%.
Second-order finite difference (FD) operator defined by:
D

(I:ﬁ.);c = Z [H%, Uz - 2’% Up + “k:+ “k+] / [hd]
d=1

In the d-th direction:

a =

T 2 Bh

where § = max (‘@gn‘/ﬁ;ﬁ) and h = hd. [Reminder: C = e

1<k<ny

Z CERFACS
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[ ] Continuous and discrete bounds

Continuous problem:
V- [6(x)Vu(x)] = f(x), VxeQ, H
{um = ur.
Continuous bounds (cilbare & Trudinger]
sup\u\ sup|u|+Csup(|f\/ﬁ) where C' = 7" —1.
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[ Continuous and discrete bounds

Continuous problem:

V- [6(x)Vu(x)] = f(x), VxeQ, : :
Ul = Ur. : g

Continuous bounds (cilbare & Trudinger]
sup \u\ Sup [ul +Csup(|f\/h) where C' = 7" —1.

Discrete problem: 2nd-order centered finite differences (conservative form)

0,.0 ( 0
Au=b - A% u= (uy,..., Uni )y U0 = (Unt1y -y Ungtny ),
.
n; unknowns nyp, Dirichlet BCs
(interior nodes) (boundary nodes)

Discrete bounds myeck <t al., 2017]

min. = mine Uy, 4 *C Inax (‘bk /oK)
1<k<n; 1<ks<ny, o < . where C = e — 1.
F; <
1“}1\11, i 13}12?7(1\) Hnitk * SI}CaX (‘ ‘/hk)
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° Server-client-based implementation

» Cluster: 1 server + n clients.
» Servers: ©

Communicate between each other.
Safe data/state storage (sandboxed).

» Clients: @---00@

One or several MPI ranks (®).

o rank Independent from one another.
eiren ot Only serve as computing units.
O cluster No assumption on their reliability.

» Separates state from computation: reduces the overall vulnerability.
» Fault-tolerance supported via ULFM-MPI: support for crashing MPI processes.

» Resilient to clients crashing: even if tasks are lost, state is safe.

» Aligns with the vision of exascale architectures: heterogeneous/hierarchical hardware.
= Resilience to hard faults (SC + ULFM-MPI) and soft faults (¢;-min. + bounds)
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L Server-client sampling mechanism

foreach subdomain Q; do

// [SERVER] Sample boundary conditions
Sample s:.k boundary conditions for Q; ;

foreach sample do
// [SERVER]

Send task to a client ;

// [CLIENT]

Receive task from server ;

Solve the local PDE in ©; using the received sample of boundary conditions ;
Send task (with the solution) back to server ; /* Corruption may occur

// [SERVER]
Receive returning task from client ; /* Task is potentially corrupted

Z CERFACS
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[ Server-client sampling mechanism

foreach subdomain Q; do
// [SERVER] Pre-processing stage
Compute the invariant parts of the bounds for €2; ;

// [SERVER] Sample boundary conditions
Sample s:.k boundary conditions for ; ;
L s:k ;
foreach sample do

// [SERVER]

Add contribution of the boundary conditions to the bounds ;
Send task to a client ;

// [CLIENT]

Receive task from server ;

Solve the local PDE in €; using the received sample of boundary conditions ;

Send task (with the solution) back to server ; /* Corruption may occur */

// [SERVER]
Receive returning task from client ; /* Task is potentially corrupted */
if received solution does not lie between the bounds then

Discard current sample ;

si —s; — 1,
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Problem:
V [k(x)Vu(x)] = f(x), VxeQ=(0,1)2, K(x) =1,

with
ulpg = 1. f(x) = tanh[d(x)/0.05]

Resilience enhancement:

5x5 11x11 25x25
100 [ 7 Y : 100 [~ : :
x 80 E T 80t ]
g oot 1 g oot R
@ 40 | g @ 40 | g
@ @
o o
3 20} R 3 20}
LAD, no bounds LS, no bounds LAD, no bounds LS, no bounds
0t LAD, with bounds LS, with bounds B 0t LAD, with bounds LS, with bounds 4
L L L L L
25 121 625 1.1 13 1.5
Number of subdomains Nominal sampling rate p*
p* =11 625 = 25 x 25 subdomains
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Summary:
» Resilient algorithm for elliptic PDEs.
» Sampling approach + robust (resilient) minimization.

» Discrete a priori bounds to enhance overall resilience.

Outlook:

» Higher-order FD schemes — new expression for a.

v

Other elliptic problems: tensor diffusion, reaction-diffusion, ...
» Non-uniform meshes (refinement).

» Apply to stochastic elliptic PDEs.

» Neumann boundary conditions?
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» This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research,
under Award Numbers DE-SC0010540 and 13-016717.

» Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Thank you for your attention.
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