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Monte Carlo Simulation for HEP...

» Detailed simulation of subatomic particles is essential
for data analysis, detector design

» Understand how detector design affect
easurements and physics

Use simulation to correct for inefficiencies,
inaccuracies, unknowns.

» The theory models to compare data against.

A good simulation demonstrates that we understand the detectors
and the physics we are studying



...and for the rest of humanity...

» Medical applications

= MRI scan (supra
conducting magnet)

»PET scan (scintillators)
» Proton beam therapy
» |ndustrial radioscopy

» Radioprotection




The problem

» Complex physics and geometry modeling
®»Some physics process are extremely rarel

®» Heavy computation requirements, massively CPU-bound

Already now more than 50% of WLCG power is used for

simulations
‘\‘”‘! 200 Computing centers in 20 countries: > 600k cores
4
v @CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage

By 2025 with the High Luminosity LHC run we will have to run simulation 100x faster!



Classical

simulation
hard to approach
the full machine
potential

X

Single event scala
fransport
Embarrassing
parallelism

Cache coherence - low
Vectorization - low
(scalar auto-
vectorization)

Parallelism in simulation

.
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Geand.

GeantV

simulation
profits at best
from dll
processing
pipelines

fransport
Fine grain parallelism
Cache coherence - high
Vectorization - high
(explicit multi-particle
interfaces)



» Transport particles in
vectors (“baskets”)

®» Filter by geometry
olume or physics
process

Keep "(re-) basketizing”
overhead under control
®» Apstract vector types to

achieve portable
vectorization

GeantV approach: boosting vectors

,Scheduler )
Basket of Basket of
tracks z tracks
4 Dispatching
- SIMD
Geometry )

%\x sections

— e eomeftry
algonthms

Reactions

Aim for a 3x-5x faster code, understand hard limits for 10x



Long-term maintainability of the
code

» Write one single version of each
algorithm

orm specialization via C++
templates and low level
optimised libraries

Backend: (frait) struct
encapsulating standard
types/properties for “scalar,
vector, GPU

» Makes information injection into
template function easy

Portable performance

i M ticl
1 particle API ASP{s‘fﬁB)C e

Common C++
template functions

UME::SIMD::double_v distance(
UME::SIMD::double_v );

\ ¢ Supported SIMD backends:

double distance( double );

template<class Backend> Ve
Backend:.double_t https://github.com/VcDevel/Vc
common_distance_function( Backend::double_t it
input ) : . )
. . UME::SIMD:
\ Il Aigorithm using Backend types https://bitbucket.org/edanor/u
mesimd
struct ScalarBackend ?thCt VectorBackend
typedef double double_t; typedef UME::SIMD::double_v 6{\/
typedef bool bool_t; eI 3 @
Ytpt. ool IS salar=true: typedef UME::SIMD::bool_v bool_t; )
static const bool Isocalar=true, static const bool IsScalar=false; e §

static const bool IsSIMD=false; static const bool IsSIMD=true;



» GeantV uses VecGeom,
vectorized geometry library

» Vectorized APIs for shape
primitives

» Vectorized APIs for navigation

» Measure speed-up for single
shapes

» Super-linear speedup for
some methods on KNL

» Compiler and algorithms
effects

Vectorized geometry

Tube
25
20 “AVX512
5 AVX2
215
o
810
Z‘ ——————————————
5°H ———'—'— — W
0y t " i | e
= @ @ N S N N
A\ Q) @) O
\({'o\ (‘\\'@ ’é« & (,é &OO
) Q@ Q Q P
% ) Q\é

Intel® Xeon Phi™ CPU 7210 @
1.30CGHz, 64 cores



» Testing geometry navigation
performance wrt classical
approach

» X-Ray scan of a simple toy
detector geometry

ldeal vectors
GeantV
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Geometry navigation on Intel Xeon Phi

Intel Xeon Phi 7210 @1.30 Hz — 64 cores

Speedup vs same(1 thread)
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» High vectorization intensity achieved for
AVX2 and AVX512 builds on KNL

» AVX512 brings the extra 2x speedup



Data layout and memory optimization

®» Reducing overheads for scatter/gather,
reshuffling, concurrency Scheduler.

»Smart AOS/SOA usage
® mprove locality

®» Thread-local data

= NUMA-aware allocation of resources,
relying on topology discovery (libhwloc)

» Minimize communication between
NUMA nodes




Performance studies




» Simulation of secondary
partficles can be @

problem for memory

anagement

» Higher generation
secondaries flushed
with priority

»\Very good behavior
even for high
number of
threads/secondaries

Memory control

Memory/GeantV version 3

1400 —8— CMSApp —8—runApp (3GeV elec, 4E7 secondaries/event)

1200 a

el

1000

800

RSS [MBytes]

o)
o
]

o
o
]

CMSApp: full LHC detector scale example
runApp: simplified geometry example
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» Relevant
improvements in single
and multi-threaded 3 NUMA

» fncrease in locality

Removal of SOA
gather/scatter
overheads

» NUMA awareness

Single thread performance

V3 VERSUSV2SINGLETHREAD PERFORMANCE
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Scalabillity

Scalability V3, runApp
ReresereeelEipetise Xeon(R) CPU E5-2630 v3 @ 2.40GHz
No obvious hotspots [ T —— S |
Memory operations still high 2
i the profile, we expect 18
picture to improve when 16
having a more balanced " VP ERTHREADING
scenario with more (vector) . ——
work on physics side. M

Speedup
N
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Studying scaling on Intel . ' /
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GeantV plans for HPC environments

» Standard mode (1 independent process per node)
» Always possible, no-brainer
» Possible issues with work balancing (events take different fime)
® Possible issues with output granularity (merging may be required)
» Multi-tier mode (event servers)
» UUseful to work with events from file, to handle merging and workload
balancing
» Communication with event servers via MPI to get event id’s in common files

.

Event feeder Event feeder
! ] ]

MPI

Event server
]

Merging service

Merging service




Summary — Part |

» A big effort to modernize simulation code and exploit at
best modern hardware

» GeantV already delivers part of the expected
performance

» Demonstrating portability of our backend approach, no
algorithmic line changed!

» Fxcellent vector performance showing that the code should
better be vectorized

®» Smart memory management and data locality further improve
performance

®» Benchmarking on Intel Xeon Phi




Deep Learning for fast simulation in
GeantV




Going beyond 10x: fast simulatfion

» |n the best case scenario GeantV will give 10x speedup — not enough

®» A certain percentage of events will have to be simulated using “faster
approaches” — fast simulation

®» |mproved, efficient and accurate fast simulation based on DL techniques

Test on most fime
consuming
detectors:
calorimeters




DL for calorimeter simulation

Generative models (Generative Stochastic Networks, Variational Auto-
Enconders, Generative Adversarial Networks, ..) can be used for simulation

» Realistic generation of samples
» Use complicated probability distributions

» Optimize multiple output for a single input

» Can do interpolation

» Work well with missing data

‘Small blue bird with black wings’ —
‘Small yellow bird with black wings’

“Tps://omiv.org/ pdf/1605.05396.pdf

Original Input Layer 1 Layer2 Layer3 Layer4 Layer4 (x10)

S5 o

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 20




Latent random variable

(/8 catch me

Generative adversarial networks = AN 7

if you can

Simultaneously train two models:

» G(z) captures the data distribution

» D(x) estimates the probability that a sample came from the training data rather
than G

» Training procedure for G(z) is to maximize the probability of D(x) making a mistake

po(data) Data distribution

Model distribution
N I3 4!
JAVAVLY: R U
Realworld —— Sample [ . '. . ...............................
images Real N Ve N "‘. . *'.
. i“‘ "' ‘.‘.‘.':' . LN . o)
Discriminator @— g &
Generator [——{ Sample

Poorly fit model After updating D After updating G~ Mixed strategy

. equilibrium

>




3dGAN for particle detectors csserimlt a3

image
» Generator and Discriminator based on 3D convolutions

» Explored several “tips&tricks”

» No batch normalisation in the last step, LeakyRelu, no
idden dense layers &, Adam optimiser &

: *_v ;

- " 88

Geant4 1m shower in LCD calorimeter

LSS https://github.com/tpmccauley/ispy-hepml




problem

’

Some generated images

®» First results look very promising!
» Qualitative results show no collapse

“GAN generated electron

100 GeV electrons

0.08

0.07

008~ Simulation

0.05

0.04

0.03

0.02

0.0

=

|

OCJ
wn

L L1 TR R L1
10 15 20 25
Saa—

I

°1f *I T

_

Shower transverse section

10 15




Single cell response

Preliminary
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Conditioning on

» Discrete energy slices to test
interpolation and
extrapolation

® Test contfinuous spectrum

» Add other variables
(primary entry point, angle,
etc..)

energy

particle
energy

|

[data sample }—{dlscrlmmator H

data
sampl

[yoo/m0]

\

Work in progress

Training the generator and the discriminator using initial particle energy

] X ‘ noise

generator

generator
sample

[

“reco”
energy




intel)

Training fime and multi-node scaling

» 3D GAN are no‘l’ “OU‘I’-Of-‘I‘he_bOX” ne‘l‘works 1. Train the discriminator 2. Train the chained GAN
" Randonm . °. Random
» Complex training process O O3 oise
» Training time cannot be a bottleneck l l

. o . . Generative Generative
» Depending on the use case retraining might [ « todel ] [ « Fodel ]
be necessary l l

Output
Output

» Hyper-parameters scan and metao-

. . o Fake " Real Fake Real
optimization o [Py £ (i o - B
» |ncluding additional variables will increase § U wesenes
Complexn-y Discriminative Discriminative
Model
» Thanks to a collaboration with CINECA, l J

Output

Italy and Infel, we will test multi-node l
scaling on a cluster of Xeon Phi Nt
interconnected with Intel Omni-Path

http://www.ricard.me/machine/learning/generative/adversarial/networks/2017/04/05/
gans-part1.html



Summary

arXiv:170x.xxx

» One of the first 3D GAN implementations and results are very promising!

» Detailed assessment of current performance and “resource costs”
(training time/training samples)

Optimization, scaling and comparison to other models

Looking forward to new software & hardware solutions!
» Next-generation Intel Xeon “Skylake™ and Intel Xeon Phi “Knights Mill”

» Test inference dedicated hardware (integrated FPGA solution) Intel
DLIA

» Prototype interface and ML proof of concept in GEANTV beta

Thank youl!



Questions®e
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eometry: navigation benchmark

» X-Ray scan of a simple toy detector

geometry
C++11

threads

. . . — A,
Test parallelism producing multiple
identical images :%

» Concentric set of fubes emulating a
tracker

e one ray per pixel and
r¢gconstruct the image

Test the global navigation

Stress vector APl + basket tfransport
tracing multiple identical tracks
through the same grid




GeantV version 3. A generic vector flow approach

-

e.g.
(/ GeantPropagat o qomptonfFilter::Dolt
S—T scala
virtual Dolt(track
Workers GeantPropagat ﬂ virtual — -O- ( )
or lec ; &OD default
Si behavior
Handler " &CT virtual IT)OoOI@”d%
SimUIOTionS’roge Basketizer “|" )
- Select next stage if different
G tTaskD from:
I¢ eantTaskData AddTrack(trac SimulationStage::fFollowUp
stage )
buffer GeantTrac p . f
lane [ lane lane . - ‘ Event rocessing riow
0 ] N Stack-like buffer server per thread

primaries secondaries



Processing flow per propagator/NUMA node
/

Event
server

Q) N
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o g 9]
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Q rﬁvcve?rl —Process—
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Scalar ;- I | Weéctor Dolt() it 0 i
Dolt() N N 0 TN
' 1l 0 1l
v 1l ! RN
(N

Vectorized code

GeantV scheduling framework revisited




NUMA awareness

» |mplemented using hwloc >
1.8

» Fnumerafing NUMA nodes,
ores, CPU’s

Threads are bound to
CPU’s

Compact thread policy within
single node, scatter for
different nodes

2 prop

2 pro|

1 pro

P

» Thread local data

NUMA

NUMA

CMSAPP,8 THREADSON ANUMA MACHINEHAVING 2X8

CORES
12.8
8%
i3 13.9
B

We expect larger improvement on Intel Xeon Phi



