
GeantV – Adapting simulation to
modern hardware

Sofia Vallecorsa for the GeantV team

PASC 2017

Outline

´ Introduction

´ The GeantV approach
´Portability

´Vectorisation and geometry navigation

´Data layout and memory optimisations
´ Scalability
´ Towards a HPC friendly application

´ A Deep Learning engine for fast simulation
´ Generative adversarial networks for calorimeter shower

´ Summary and plans

2

Monte Carlo Simulation for HEP…

´ Detailed simulation of subatomic particles is essential
for data analysis, detector design

´ Understand how detector design affect
measurements and physics

´ Use simulation to correct for inefficiencies,
inaccuracies, unknowns.

´ The theory models to compare data against.

3

A good simulation demonstrates that we understand the detectors
and the physics we are studying

´ Medical applications

´MRI scan (supra
conducting magnet)

´PET scan (scintillators)

´Proton beam therapy

´ Industrial radioscopy

´ Radioprotection

…and for the rest of humanity…

The problem

´Complex physics and geometry modeling

´Some physics process are extremely rare!

´Heavy computation requirements, massively CPU-bound

´Already now more than 50% of WLCG power is used for
simulations

5

By 2025 with the High Luminosity LHC run we will have to run simulation 100x faster!

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage

Parallelism in simulation6

Classical
simulation
hard to approach
the full machine
potential

GeantV
simulation
profits at best
from all
processing
pipelines

• Single event scalar
transport

• Embarrassing
parallelism

• Cache coherence – low
• Vectorization – low

(scalar auto-
vectorization)

• Multi-event vector
transport

• Fine grain parallelism
• Cache coherence – high
• Vectorization – high

(explicit multi-particle
interfaces)

GeantV approach: boosting vectors7

Aim for a 3x-5x faster code, understand hard limits for 10x

´ Transport particles in
vectors (“baskets”)
´ Filter by geometry

volume or physics
process

´ Keep ”(re-) basketizing”
overhead under control

´ Abstract vector types to
achieve portable
vectorization

Portable performance

Long-term maintainability of the
code

´ Write one single version of each
algorithm

´ Platform specialization via C++
templates and low level
optimised libraries

´ Backend: (trait) struct
encapsulating standard
types/properties for “scalar,
vector, GPU
´ Makes information injection into

template function easy

template<class Backend>
Backend::double_t
common_distance_function(Backend::double_t
input)
{

// Algorithm using Backend types
}

struct VectorBackend
{

typedef UME::SIMD::double_v
double_t;

typedef UME::SIMD::bool_v bool_t;
static const bool IsScalar=false;
static const bool IsSIMD=true;

};

1 particle API Many particle
API (SIMD)

Common C++
template functions

UME::SIMD::double_v distance(
UME::SIMD::double_v);double distance(double);

struct ScalarBackend
{

typedef double double_t;
typedef bool bool_t;
static const bool IsScalar=true;
static const bool IsSIMD=false;

};

8

Supported SIMD backends:
Vc:
https://github.com/VcDevel/Vc
.git
UME::SIMD:
https://bitbucket.org/edanor/u
mesimd

Vectorized geometry
´ GeantV uses VecGeom,

vectorized geometry library

´ Vectorized APIs for shape
primitives

´ Vectorized APIs for navigation

´ Measure speed-up for single
shapes

´ Super-linear speedup for
some methods on KNL

´ Compiler and algorithms
effects

9

Tube

Geometry navigation on Intel Xeon Phi
´ Testing geometry navigation

performance wrt classical
approach

´X-Ray scan of a simple toy
detector geometry

10

Intel Xeon Phi 7210 @1.30 Hz – 64 cores

Speedup vs same(1 thread)

´ High vectorization intensity achieved for
AVX2 and AVX512 builds on KNL

´ AVX512 brings the extra 2x speedup

Ideal vectors
GeantV
Classical

Ideal vectors
GeantV

Data layout and memory optimization11

´ Reducing overheads for scatter/gather,
reshuffling, concurrency
´Smart AOS/SOA usage

´ Improve locality
´Thread-local data
´ NUMA-aware allocation of resources,

relying on topology discovery (libhwloc)

´ Minimize communication between
NUMA nodes

12 Performance studies

Memory control
´ Simulation of secondary

particles can be a
problem for memory
management
´Higher generation

secondaries flushed
with priority

´Very good behavior
even for high
number of
threads/secondaries

13

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300
RS
S	
[M

By
te
s]

#nthreads

Memory/GeantV	version	3

CMSApp runApp	(3GeV	elec,	4E7	secondaries/event)

CMSApp: full LHC detector scale example
runApp: simplified geometry example

Single thread performance

´ Relevant
improvements in single
and multi-threaded
mode

´ Increase in locality
´Removal of SOA

gather/scatter
overheads

´NUMA awareness

14

91.08

66.17

65.31

122.4

70.59

68.14

0 20 40 60 80 100 120 140

v2

v3

v3	NUMA

V3	VERSUS	V2	SINGLE	THREAD	PERFORMANCE

runApp
CMSApp29%

44%

Scalability
´ Not as good as expected

´ No obvious hotspots

´ Memory operations still high
in the profile, we expect
picture to improve when
having a more balanced
scenario with more (vector)
work on physics side.

´ Studying scaling on Intel
Xeon Phi

15

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Sp
ee
du
p

#threads

Scalability	V3,	runApp
Xeon(R)	CPU	E5-2630	v3	@	2.40GHz

ideal tpc=N Ncores numa

HYPERTHREADING

GeantV plans for HPC environments
´ Standard mode (1 independent process per node)

´ Always possible, no-brainer
´ Possible issues with work balancing (events take different time)
´ Possible issues with output granularity (merging may be required)

´ Multi-tier mode (event servers)
´ Useful to work with events from file, to handle merging and workload

balancing
´ Communication with event servers via MPI to get event id’s in common files

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

Event feeder

Node1

Transport Transport

Numa0 Numa1

Event feeder

Node2

Transport Transport

Numa0 Numa1

Event server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging service

MPI

MPI

Summary – Part 1

´ A big effort to modernize simulation code and exploit at
best modern hardware

´ GeantV already delivers part of the expected
performance
´ Demonstrating portability of our backend approach, no

algorithmic line changed!
´ Excellent vector performance showing that the code should

better be vectorized

´ Smart memory management and data locality further improve
performance

´Benchmarking on Intel Xeon Phi

17

Deep Learning for fast simulation in
GeantV

18

LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV

energies (~ LHC for protons)

• Not a real experiment yet, so we) can simulate data and make it public.

• Simpler geometry than ATLAS…

• The LCD calorimeter is an array of absorber material and silicon sensors comprising the
most granular calorimeter design available

• Data is essentially a 3D image

• So far several million Pi0, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet
samples planned.

• ECAL (25x25x25) / HCAL (5x5x60) “window”. Aux info: Energy, …

• First studies, π
0

 vs γ classification with various DNNs by summer students.

• Code/results not collected… but should be easy to redo.

• New version of dataset.

• Some visualization code exists… Full running example in CaloDNN.

• Many interesting problems: PID Classification, Energy Regression, Shower generative
models.

The LCD calorimeter
• CLIC is a CERN project for a linear

accelerator of electrons and
positrons to TeV energies (~ LHC for
protons)

• The LCD is the detector design
associated to the project

• The LCD calorimeter is an array of
absorber material and silicon
sensors

• So far, the most granular (i.e., more
“pixels”) calorimeter design
available

4

A long way to an optimal network architecture

19

• From this first exercise,
we still have sizeable
improvement margin
ahead

• Planning for an
extended
hyperparameter
optimization on the
CSCS cluster in Lugano

• Starting to work on
regressions in parallel,
with CERN/Caltech
Summer students

Calorimetry in one slide
• Most particles hitting a dense material develop a

shower of particles

• In this stochastic process, they loose energy, which
is transmitted to the material

• Properly instrumenting the material, this energy can
be collected as an electronic signal and converted
into an energy measurement

• The shape of the shower is related to the nature of
the particle

• calorimeter fragmented in cells to allow particle
identification from shower shape

• each cell is a volume in space associated to an
energy deposit

Electromagnetic
shower (e, γ)

Hadronic shower
(π, Κ, p, n, ..)

3

Calorimetry in one slide
• Most particles hitting a dense material develop a

shower of particles

• In this stochastic process, they loose energy, which
is transmitted to the material

• Properly instrumenting the material, this energy can
be collected as an electronic signal and converted
into an energy measurement

• The shape of the shower is related to the nature of
the particle

• calorimeter fragmented in cells to allow particle
identification from shower shape

• each cell is a volume in space associated to an
energy deposit

Electromagnetic
shower (e, γ)

Hadronic shower
(π, Κ, p, n, ..)

3

Going beyond 10x: fast simulation

´ In the best case scenario GeantV will give 10x speedup → not enough

´ A certain percentage of events will have to be simulated using “faster
approaches” → fast simulation

´ Improved, efficient and accurate fast simulation based on DL techniques

19

Test on most time
consuming
detectors:
calorimeters

DL for calorimeter simulation
Generative models (Generative Stochastic Networks, Variational Auto-
Enconders, Generative Adversarial Networks, ..) can be used for simulation

´ Realistic generation of samples

´ Use complicated probability distributions

´ Optimize multiple output for a single input

´ Can do interpolation

´ Work well with missing data

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 2011
https://arxiv.org/pdf/1605.05396.pdf

20

Generative adversarial networks

Simultaneously train two models:

´ G(z) captures the data distribution

´ D(x) estimates the probability that a sample came from the training data rather
than G

´ Training procedure for G(z) is to maximize the probability of D(x) making a mistake

21

3dGAN for particle detectors

´ Generator and Discriminator based on 3D convolutions
´ Explored several “tips&tricks”

´No batch normalisation in the last step, LeakyRelu, no
hidden dense layers 😀 , Adam optimiser ☹

22

https://github.com/tpmccauley/ispy-hepml

Geant4 π shower in LCD calorimeter

25 25 25

Data is
essentially a 3D

image

Some generated images

´ First results look very promising!
´ Qualitative results show no collapse

problem

23

Y

Z

Classical full
simulation
GAN

Shower longitudinal section

Shower transverse section

GAN generated electron

100 GeV electrons

Single cell response

Y

Preliminary
24

Conditioning on energy

´ Discrete energy slices to test
interpolation and
extrapolation

´ Test continuous spectrum

´ Add other variables
(primary entry point, angle,
etc..)

Work in progress

25

Training the generator and the discriminator using initial particle energy

Training time and multi-node scaling

´ 3D GAN are not “out-of-the-box” networks

´ Complex training process

´ Training time cannot be a bottleneck

´ Depending on the use case retraining might
be necessary

´ Hyper-parameters scan and meta-
optimization

´ Including additional variables will increase
complexity

´ Thanks to a collaboration with CINECA,
Italy and Intel, we will test multi-node
scaling on a cluster of Xeon Phi
interconnected with Intel Omni-Path

26

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/
gans-part1.html

Summary

´ One of the first 3D GAN implementations and results are very promising!

´Detailed assessment of current performance and “resource costs”
(training time/training samples)

´Optimization, scaling and comparison to other models

´ Looking forward to new software & hardware solutions!

´Next-generation Intel Xeon “Skylake” and Intel Xeon Phi “Knights Mill”

´ Test inference dedicated hardware (integrated FPGA solution) Intel
DLIA

´ Prototype interface and ML proof of concept in GEANTV beta

Thank you!

27
arXiv:170x.xxx

Questions?28

References

´ Goodfellow et al. 2014

´ Conditional GAN, arXiv: 1411.1744

´ Deep Convolutional GAN, arXiv:1511.06434

´ Auxiliary Classifier GAN, arXiv:1610.0958

29

Geometry: navigation benchmark
´ X-Ray scan of a simple toy detector

geometry

´ Concentric set of tubes emulating a
tracker

´ Trace one ray per pixel and
reconstruct the image

´ Test the global navigation

´ Stress vector API + basket transport
tracing multiple identical tracks
through the same grid

´ Test parallelism producing multiple
identical images

30

C++11

Stage
buffer

SimulationStage
virtual DoIt(,
)

SimulationStage

Handler 1
Basketizer 1

Handler “i”
Basketizer “I”

virtual
Select(track)

virtual DoIt(track)

AddTrack(track,
)

scala
r

vect
or

loo
p default

behavior
to override

e.g.
ComptonFilter::DoIt

Select next stage if different
from:
SimulationStage::fFollowUp

SimulationStage

Stage
buffer

SimulationStage

loo
p

31
GeantV version 3: A generic vector flow approach

Stage
bufferStage

buffer GeantTrac
k *

GeantPropagat
or

GeantTaskData

GeantPropagat
or

workers

Stack-like bufferlane
0

lane
1

lane
N…

primaries secondaries
…

Processing flow
per thread

Event
server

Processing flow per propagator/NUMA node32

G
eom

etryStage

PropagationStage

PhysicsStage

Event
server

Volume
1

Volume
2

Basketizer

Scalar code

Vectorized code

Linear
prop.

Basketizer

Field
prop.

Basketizer

Process
1

Process
2

BasketizerHandlers

Stage buffers

Threads on
same
propagator/soc
ket

Scalar
DoIt()

Vector DoIt()

GeantV scheduling framework revisited

NUMA awareness

´ Implemented using hwloc >
1.8
´ Enumerating NUMA nodes,

cores, CPU’s

´ Threads are bound to
CPU’s

´ Compact thread policy within
single node, scatter for
different nodes

´ Thread local data

33

13.98

13.58

13.9

12.8

12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14 14.2

SYS

NUMA

SYS

NUMA

1	
pr
op

1	
pr
op

2	
pr
op

2	
pr
op

CMSAPP,	8	THREADS	ON	A	NUMA	MACHINE	HAVING	2X8	
CORES

time[s]

8%

3%

We expect larger improvement on Intel Xeon Phi

