

inte

GeantV – Adapting simulation to modern hardware

Sofia Vallecorsa for the GeantV team

Outline

- Introduction
- The GeantV approach
 - Portability
 - Vectorisation and geometry navigation
 - Data layout and memory optimisations
 - Scalability
 - Towards a HPC friendly application
- A Deep Learning engine for fast simulation
 - Generative adversarial networks for calorimeter shower
- Summary and plans

Monte Carlo Simulation for HEP...

- Detailed simulation of subatomic particles is essential for data analysis, detector design
 - Understand how detector design affect measurements and physics

3

- Use simulation to correct for inefficiencies, inaccuracies, unknowns.
- The theory models to compare data against.

A good simulation demonstrates that we understand the detectors and the physics we are studying

...and for the rest of humanity...

Medical applications

- MRI scan (supra conducting magnet)
- ► PET scan (scintillators)
- Proton beam therapy
- Industrial radioscopy
- Radioprotection

- Some physics process are extremely rare!
- Héavy computation requirements, massively CPU-bound
- Already now more than 50% of WLCG power is used for simulations

5

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk +>35PB tape storage

By 2025 with the High Luminosity LHC run we will have to run simulation 100x faster!

GeantV approach: boosting vectors

 Transport particles in vectors ("baskets")

7

- Filter by geometry volume or physics process
- Keep "(re-) basketizing" overhead under control
- Abstract vector types to achieve portable vectorization

Aim for a 3x-5x faster code, understand hard limits for 10x

Portable performance

Long-term maintainability of the code

- Write one single version of each algorithm
- Platform specialization via C++ templates and low level optimised libraries
 - **Backend:** (trait) struct encapsulating standard types/properties for "scalar, vector, GPU
 - Makes information injection into template function easy

Vectorized geometry

 GeantV uses <u>VecGeom</u>, vectorized geometry library

9

- Vectorized APIs for shape primitives
- Vectorized APIs for navigation
- Measure speed-up for single shapes
 - Super-linear speedup for some methods on KNL
 - Compiler and algorithms effects

Intel® Xeon Phi™ CPU 7210 @ 1.30GHz, 64 cores

Geometry navigation on Intel Xeon Phi

Intel Xeon Phi 7210 @1.30 Hz - 64 cores

 Testing geometry navigation performance wrt classical approach

10

 X-Ray scan of a simple toy detector geometry

- High vectorization intensity achieved for AVX2 and AVX512 builds on KNL
- AVX512 brings the extra 2x speedup

Data layout and memory optimization

- Reducing overheads for scatter/gather, reshuffling, concurrency
 - Smart AOS/SOA usage
 - Improve locality

- Thread-local data
- NUMA-aware allocation of resources, relying on topology discovery (libhwloc)
- Minimize communication between NUMA nodes

Performance studies

Memory control

Simulation of secondary particles can be a problem for memory management

- Higher generation secondaries flushed with priority
- Very good behavior even for high number of threads/secondaries

Single thread performance

 Relevant improvements in single and multi-threaded mode

14

- Increase in locality
- Removal of SOA gather/scatter overheads
- NUMA awareness

Scalability

- Not as good as expected
- No obvious hotspots
- Memory operations still high in the profile, we expect picture to improve when having a more balanced scenario with more (vector) work on physics side.
- Studying scaling on Intel Xeon Phi

GeantV plans for HPC environments

- Standard mode (1 independent process per node)
 - Always possible, no-brainer
 - Possible issues with work balancing (events take different time)
 - Possible issues with output granularity (merging may be required)
- Multi-tier mode (event servers)
 - Useful to work with events from file, to handle merging and workload balancing
 - Communication with event servers via MPI to get event id's in common files

- A big effort to modernize simulation code and exploit at best modern hardware
- GeantV already delivers part of the expected performance
 - Demonstrating portability of our backend approach, no algorithmic line changed!
 - Excellent vector performance showing that the code should better be vectorized
 - Smart memory management and data locality further improve performance
 - Benchmarking on Intel Xeon Phi

Deep Learning for fast simulation in GeantV

positrons to

Going beyond 10x. Fallerinetry in

■ In the best case scenario GeantV will give 10x speedup \rightarrow not enough

19

- A certain percentage of events will have to be simulated using faster approaches" \rightarrow fast simulation
- Properly instrumenting the material, this energy is a set of the set of th

• The shape of the shower is related to me man the estronemost time

Most particles hitting a dense material develop

consuming

- alprimeter fragmented in cells to allow pa identification from shower shape
- each cell is a volume in space associated energy deposit З

DL for calorimeter simulation

Generative models (Generative Stochastic Networks, Variational Auto-Enconders, Generative Adversarial Networks, ..) can be used for simulation

- Realistic generation of samples
- Use complicated probability distributions
- Optimize multiple output for a single input
- Can do interpolation
- Work well with missing data

'Small blue bird with black wings' \rightarrow 'Small yellow bird with black wings'

20

https://arxiv.org/pdf/1605.05396.pdf

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 20

Generative adversarial networks

Simultaneously train two models:

- G(z) captures the data distribution
- D(x) estimates the probability that a sample came from the training data rather than G
- Training procedure for G(z) is to maximize the probability of D(x) making a mistake

²² 3dGAN for particle detectors

- Generator and Discriminator based on 3D convolutions
- Explored several "tips&tricks"

Primary particle

No batch normalisation in the last step, LeakyRelu, no hidden dense layers up , Adam optimiser up

Geant4 π shower in LCD calorimeter

https://github.com/tpmccauley/ispy-hepml

Data is

essentially a 3D

Some generated images

100 GeV electrons

First results look very promising!
Qualitative results show no collapse problem

23

GAN generated electron

Preliminary

Conditioning on energy

Training the generator and the discriminator using initial particle energy

- Discrete energy slices to test interpolation and extrapolation
- Test continuous spectrum

25

 Add other variables (primary entry point, angle, etc..)

Training time and multi-node scaling

- 3D GAN are not "out-of-the-box" networks
 - Complex training process

26

- Training time cannot be a bottleneck
 - Depending on the use case retraining might be necessary
 - Hyper-parameters scan and metaoptimization
 - Including additional variables will increase complexity
- Thanks to a collaboration with CINECA, Italy and Intel, we will test multi-node scaling on a cluster of Xeon Phi interconnected with Intel Omni-Path

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/ gans-part1.html

Summary

27

arXiv:170x.xxx

- One of the first 3D GAN implementations and results are very promising!
 - Detailed assessment of current performance and "resource costs" (training time/training samples)
 - Optimization, scaling and comparison to other models
 - Looking forward to new software & hardware solutions!
 - Next-generation Intel Xeon "Skylake" and Intel Xeon Phi "Knights Mill"
 - Test inference dedicated hardware (integrated FPGA solution) Intel DLIA
- Prototype interface and ML proof of concept in GEANTV beta

Thank you!

References

- Goodfellow et al. 2014
- Conditional GAN, arXiv: 1411.1744
- Deep Convolutional GAN, arXiv:1511.06434
- Auxiliary Classifier GAN, arXiv:1610.0958

Geometry: navigation benchmark

- X-Ray scan of a simple toy detector geometry
 - Concentric set of tubes emulating a tracker
 - Trace one ray per pixel and reconstruct the image
- Test the global navigation
- Stress vector API + basket transport tracing multiple identical tracks through the same grid
- Test parallelism producing multiple identical images

Processing flow per propagator/NUMA node

GeantV scheduling framework revisited

33

NUMA awareness

- Implemented using hwloc > 1.8
 - Enumerating NUMA nodes, cores, CPU's
 - Threads are bound to CPU's
- Compact thread policy within single node, scatter for different nodes
- Thread local data

We expect larger improvement on Intel Xeon Phi