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Monte Carlo Simulation for HEP…

´ Detailed simulation of subatomic particles is essential 
for data analysis, detector design

´ Understand how detector design affect 
measurements and physics

´ Use simulation to correct for inefficiencies, 
inaccuracies, unknowns.

´ The theory models to compare data against.
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A good simulation demonstrates that we understand the detectors 
and the physics we are studying



´ Medical applications

´MRI scan (supra 
conducting magnet)

´PET scan (scintillators)

´Proton beam therapy

´ Industrial radioscopy

´ Radioprotection

…and for the rest of humanity…



The problem

´Complex physics and geometry modeling

´Some physics process are extremely rare!

´Heavy computation requirements, massively CPU-bound

´Already now more than 50% of WLCG power is used for 
simulations
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By 2025 with the High Luminosity LHC run we will have to run simulation 100x faster!

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage 



Parallelism in simulation6

Classical 
simulation
hard to approach 
the full machine 
potential

GeantV
simulation
profits at best 
from all 
processing 
pipelines

• Single event scalar 
transport

• Embarrassing 
parallelism

• Cache coherence – low
• Vectorization – low 

(scalar auto-
vectorization)

• Multi-event vector 
transport

• Fine grain parallelism
• Cache coherence – high
• Vectorization – high 

(explicit multi-particle 
interfaces)



GeantV approach: boosting vectors7

Aim for a 3x-5x faster code, understand hard limits for 10x

´ Transport particles in 
vectors (“baskets”)
´ Filter by geometry 

volume or physics 
process

´ Keep ”(re-) basketizing” 
overhead under control

´ Abstract vector types to 
achieve portable 
vectorization



Portable performance

Long-term maintainability of the 
code

´ Write one single version of each 
algorithm

´ Platform specialization via C++ 
templates and low level 
optimised libraries 

´ Backend:  (trait) struct
encapsulating standard 
types/properties for “scalar, 
vector, GPU
´ Makes information injection into 

template function easy

template<class Backend>
Backend::double_t 
common_distance_function( Backend::double_t 
input )
{

// Algorithm using Backend types
}

struct VectorBackend
{

typedef UME::SIMD::double_v 
double_t;

typedef UME::SIMD::bool_v bool_t;
static const bool IsScalar=false;
static const bool IsSIMD=true;

};

1 particle API Many particle 
API (SIMD)

Common C++ 
template functions

UME::SIMD::double_v distance( 
UME::SIMD::double_v );double distance( double );

struct ScalarBackend
{

typedef double double_t;
typedef bool   bool_t;
static const bool IsScalar=true;
static const bool IsSIMD=false;

};
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Supported SIMD backends: 
Vc:
https://github.com/VcDevel/Vc
.git
UME::SIMD:
https://bitbucket.org/edanor/u
mesimd



Vectorized geometry
´ GeantV uses VecGeom, 

vectorized geometry library

´ Vectorized APIs for shape
primitives

´ Vectorized APIs for navigation

´ Measure speed-up for single 
shapes

´ Super-linear speedup for 
some methods on KNL

´ Compiler and algorithms 
effects 
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Tube



Geometry navigation on Intel Xeon Phi
´ Testing geometry navigation 

performance wrt classical 
approach

´X-Ray scan of a simple toy 
detector geometry
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Intel Xeon Phi 7210 @1.30 Hz – 64 cores

Speedup vs same(1 thread)

´ High vectorization intensity achieved for 
AVX2 and AVX512 builds on KNL                            

´ AVX512 brings the extra 2x speedup

Ideal vectors
GeantV
Classical

Ideal vectors
GeantV



Data layout and memory optimization11

´ Reducing overheads for scatter/gather, 
reshuffling, concurrency
´Smart AOS/SOA usage 

´ Improve locality
´Thread-local data
´ NUMA-aware allocation of resources, 

relying on topology discovery (libhwloc)

´ Minimize communication between 
NUMA nodes



12 Performance studies



Memory control
´ Simulation of secondary 

particles can be a 
problem for memory 
management
´Higher generation 

secondaries flushed 
with priority

´Very good behavior 
even for high 
number of 
threads/secondaries
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Single thread performance

´ Relevant 
improvements in single 
and multi-threaded 
mode

´ Increase in locality
´Removal of SOA 

gather/scatter 
overheads

´NUMA awareness
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Scalability
´ Not as good as expected

´ No obvious hotspots

´ Memory operations still high 
in the profile, we expect 
picture to improve when 
having a more balanced 
scenario with more (vector) 
work on physics side.

´ Studying scaling on Intel 
Xeon Phi
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GeantV plans for HPC environments
´ Standard mode (1 independent process per node)

´ Always possible, no-brainer
´ Possible issues with work balancing (events take different time)
´ Possible issues with output granularity (merging may be required)

´ Multi-tier mode (event servers)
´ Useful to work with events from file, to handle merging and workload 

balancing
´ Communication with event servers via MPI to get event id’s in common files
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Summary – Part 1

´ A big effort to modernize simulation code and exploit at 
best modern hardware

´ GeantV already delivers part of the expected 
performance
´ Demonstrating portability of our backend approach, no 

algorithmic line changed!
´ Excellent vector performance showing that the code should 

better be vectorized

´ Smart memory management and data locality further improve 
performance

´Benchmarking on Intel Xeon Phi
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Deep Learning for fast simulation in 
GeantV
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LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV 

energies (~ LHC for protons) 

• Not a real experiment yet, so we) can simulate data and make it public.  

• Simpler geometry than ATLAS…  

• The LCD calorimeter is an array of absorber material and silicon sensors  comprising the 
most granular calorimeter design available  

• Data is essentially a 3D image 

• So far several million Pi0, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet 
samples planned. 

• ECAL (25x25x25) / HCAL (5x5x60) “window”. Aux info: Energy, …  

• First studies, π
0

 vs γ classification with various DNNs by summer students.  

• Code/results not collected… but should be easy to redo. 

• New version of dataset.  

• Some visualization code exists… Full running example in CaloDNN. 

• Many interesting problems: PID Classification, Energy Regression, Shower generative 
models. 

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 
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A long way to an optimal network architecture
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• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)
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Going beyond 10x: fast simulation

´ In the best case scenario GeantV will give 10x speedup → not enough

´ A certain percentage of events will have to be simulated using “faster 
approaches” → fast simulation

´ Improved, efficient and accurate fast simulation based on DL techniques
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Test on most time 
consuming 
detectors: 
calorimeters



DL for calorimeter simulation
Generative models (Generative Stochastic Networks, Variational Auto-
Enconders, Generative Adversarial Networks, ..) can be used for simulation 

´ Realistic generation of samples

´ Use complicated probability distributions

´ Optimize multiple output for a single input

´ Can do interpolation

´ Work well with missing data

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 2011
https://arxiv.org/pdf/1605.05396.pdf
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Generative adversarial networks

Simultaneously train two models: 

´ G(z) captures the data distribution 

´ D(x) estimates the probability that a sample came from the training data rather 
than G 

´ Training procedure for G(z) is to maximize the probability of D(x) making a mistake 
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3dGAN for particle detectors

´ Generator and Discriminator based on 3D convolutions
´ Explored several “tips&tricks”

´No batch normalisation in the last step, LeakyRelu, no 
hidden dense layers 😀 , Adam optimiser ☹
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https://github.com/tpmccauley/ispy-hepml

Geant4 π shower in LCD calorimeter

25 25 25

Data is 
essentially a 3D 

image 



Some generated images

´ First results look very promising!
´ Qualitative results show no collapse 

problem
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Z

Classical full 
simulation
GAN

Shower longitudinal section

Shower transverse section

GAN generated electron

100 GeV electrons



Single cell response

Y

Preliminary
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Conditioning on energy

´ Discrete energy slices to test 
interpolation and 
extrapolation 

´ Test continuous spectrum 

´ Add other variables 
(primary entry point, angle, 
etc..) 

Work in progress
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Training the generator and the discriminator using initial particle energy 



Training time and multi-node scaling

´ 3D GAN are not “out-of-the-box” networks

´ Complex training process

´ Training time  cannot be a bottleneck

´ Depending on the use case retraining might 
be necessary

´ Hyper-parameters scan and meta-
optimization

´ Including additional variables will increase 
complexity

´ Thanks to a collaboration with CINECA, 
Italy and Intel,  we will test multi-node 
scaling on a cluster of Xeon Phi 
interconnected with Intel Omni-Path
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http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/
gans-part1.html



Summary

´ One of the first 3D GAN implementations and results are very promising!

´Detailed assessment of current performance and “resource costs” 
(training time/training samples)

´Optimization, scaling and comparison to other models

´ Looking forward to new software & hardware solutions!

´Next-generation Intel Xeon “Skylake” and Intel Xeon Phi “Knights Mill”

´ Test inference dedicated hardware (integrated FPGA solution) Intel 
DLIA

´ Prototype interface and ML proof of concept in GEANTV beta

Thank you!
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Questions?28
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Geometry: navigation benchmark
´ X-Ray scan of a simple toy detector 

geometry

´ Concentric set of tubes emulating a 
tracker

´ Trace one ray per pixel and 
reconstruct the image

´ Test the global navigation

´ Stress vector API  + basket transport 
tracing multiple identical tracks 
through the same grid

´ Test parallelism producing multiple 
identical images
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C++11



Stage 
buffer

SimulationStage
virtual DoIt(      ,        
)

SimulationStage

Handler 1
Basketizer 1

Handler “i”
Basketizer “I”

virtual 
Select(track)

virtual DoIt(track)

AddTrack(track,            
)

scala
r

vect
or

loo
p default 

behavior
to override

e.g. 
ComptonFilter::DoIt

Select next stage if different 
from: 
SimulationStage::fFollowUp

SimulationStage

Stage 
buffer

SimulationStage

loo
p
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GeantV version 3: A generic vector flow approach

Stage 
bufferStage 

buffer GeantTrac
k *

GeantPropagat
or

GeantTaskData

GeantPropagat
or

workers

Stack-like bufferlane
0

lane
1

lane
N…

primaries secondaries
…

Processing flow 
per thread

Event 
server



Processing flow per propagator/NUMA node32

G
eom

etryStage

PropagationStage

PhysicsStage

Event 
server

Volume
1

Volume
2

Basketizer

Scalar code

Vectorized code

Linear 
prop.

Basketizer

Field 
prop.

Basketizer

Process
1

Process
2

BasketizerHandlers

Stage buffers

Threads on 
same 
propagator/soc
ket

Scalar 
DoIt()

Vector DoIt()

GeantV scheduling framework revisited



NUMA awareness

´ Implemented using hwloc > 
1.8
´ Enumerating NUMA nodes, 

cores, CPU’s

´ Threads are bound to 
CPU’s

´ Compact thread policy within 
single node, scatter for 
different nodes

´ Thread local data
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