STITCHED THE MULTI-THREADED CMS FRAMEWORK: STRATEGY AND PERFORMANCE ON HPC PLATFORMS

or

how to convert 100TB/s into a Nobel prize

Slides stolen from: Erica Brondolin Lindsay Gray John Harvey

Sverre Jarp

Chris Jones

Felice Pantaleo

David Rohr

Lucia Silvestris

Vincenzo Innocente
CMS Experiment & CERN/ EP-SFT

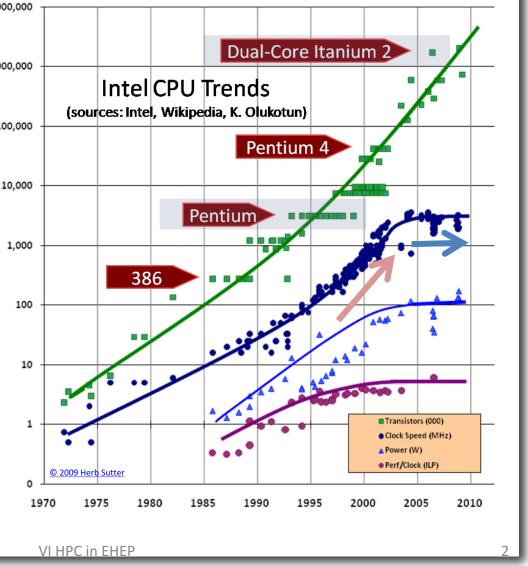
PASC 2017

Lugano

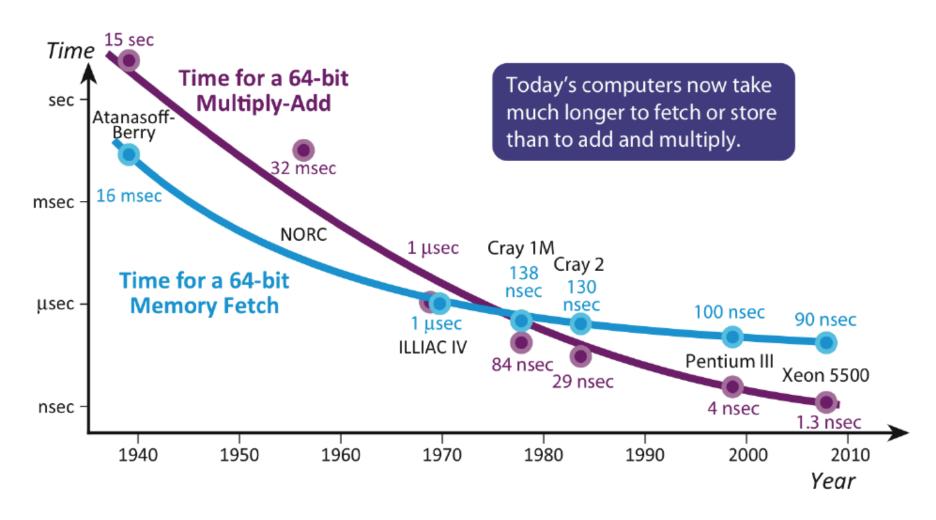
June 28th, 2017

Why are we here today?

- The 7 "fat" years of frequency,...
 scaling:
 - The Pentium Pro in
 1996: 150 MHz (12W)
 - The Pentium 4 in 2003:^{∞,∞}3.8 GHz (~25x) (115W)
- Since then
 - Core 2 systems:
 - ~3 GHz
 - Multi-core
- Recent CERN purchase:
 - Intel Xeon E5-2630 v3
 - "only" 2.40 GHz (85W)
 - 8 core

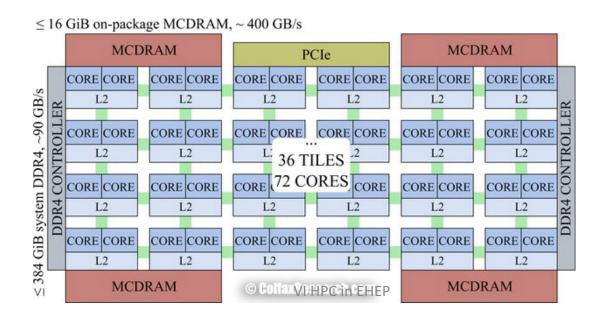


Memory Latency

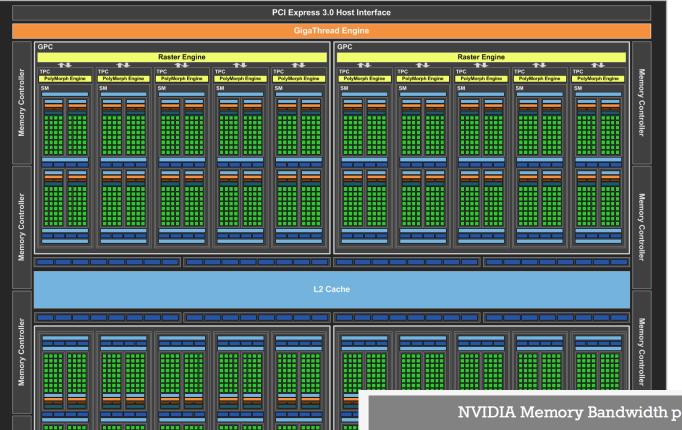


Simple, but illustrative example

- KNL has ~64 cores @1.30GHz, 2FMA port (VPU) each, 4-way hardware threading, hardware vectors of size 8 (Double Precision), 16GB of fast memory:
- 3TFLOPS DP for 400GB/s = 0.5bit/flop-sp
 - -60 fp-ops = 1 fp-load



Streaming Multiprocessor Architecture



NVIDIA Pascal
32 CUDA core
x4 x5 x4 = 2560
Floating Point Units
@1.7GHz
8GB fast memory

Require 110 fp-ops to compensate one memory access!

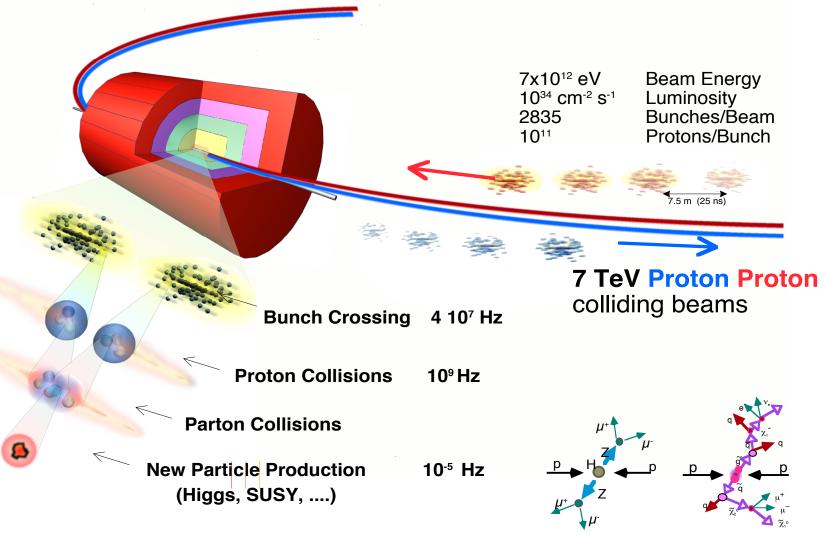
NVIDIA Memory Bandwidth per FLOP (In Bits)						
GPU	Bandwidth/FLOP	Total FLOPs	Total Bandwidth			
GTX 1080	0.29 bits	8.87 TFLOPs	320GB/sec			
GTX 980	0.36 bits	4.98 TFLOPs	224GB/sec			
GTX 680	0.47 bits	3.25 TFLOPs	192GB/sec			
GTX 580 VI HPC in EHE	0.97 bits	1.58 TFLOPs	192GB/sec 5			

Raster Engine

Do More with Less

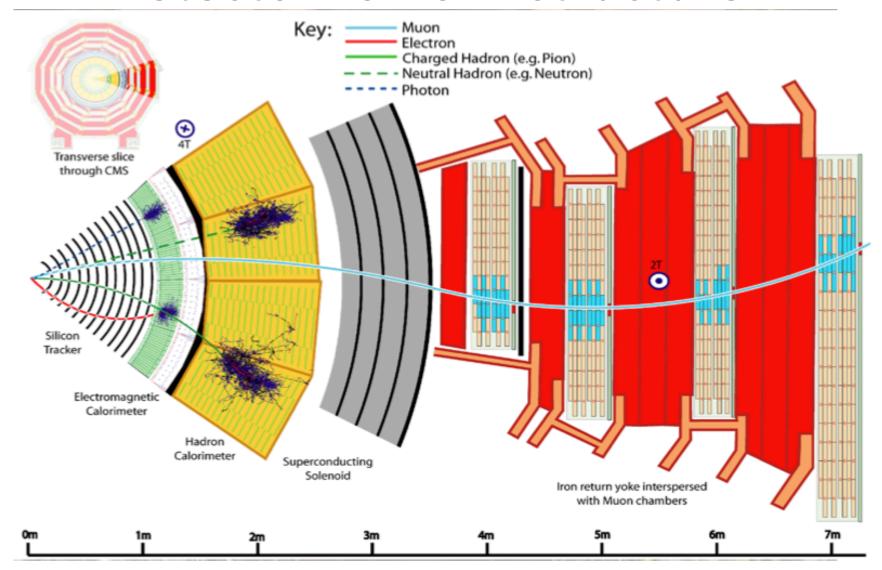
- Improving throughput and/or latency requires exploiting optimal massive parallelization at all levels
- Speeding up algorithms will not pay up if memory access is not reduced

Collisions at the LHC: summary

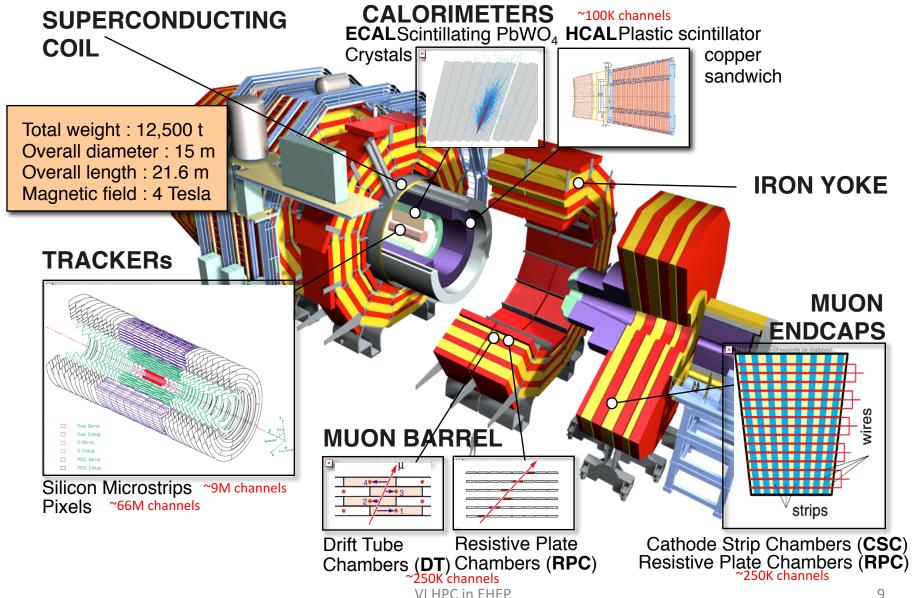


Selection of 1 event in 10,000,000,000,000

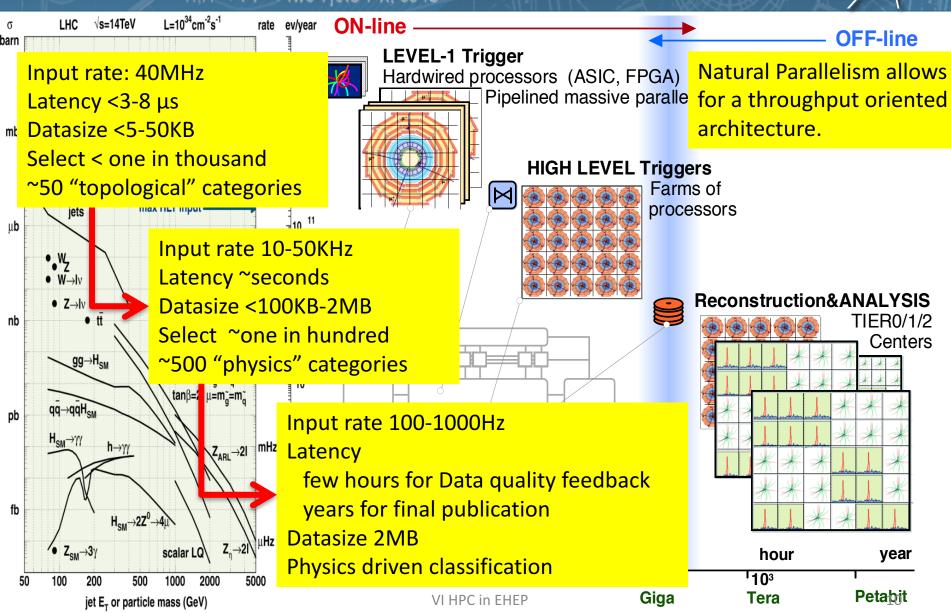
Detector "onion" structure



An experiment: CMS



Data Flow



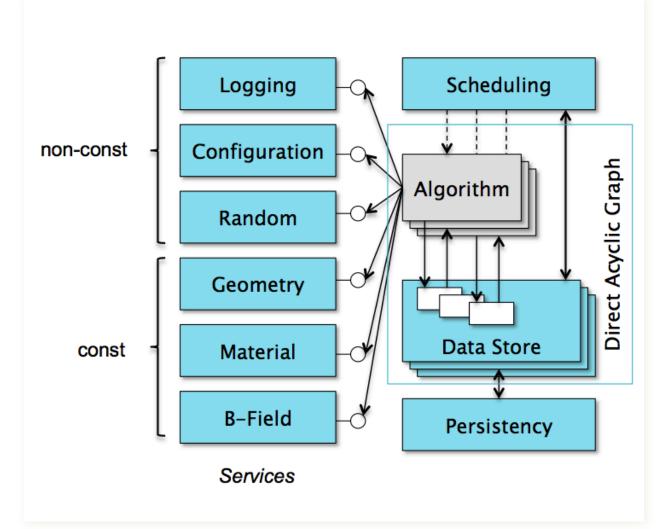
Toward 2023

- High Luminosity: proton collisions per bunch-crossing (PU) 40 -> 200
 - x5 more occupancy in detectors
 - Access to new corners of phase-space
 - High Mass, Boosted topologies
 - Dense environment
- New Detectors
 - New Tracker
 - Higher granularity (x4), extended coverage, hardware trigger capability
 - CMS: New High granularity Calorimeter
 - Timing information
- First Level Trigger
 - Include Tracking information
 - Output Rate up to 1MHz
- High Level Trigger
 - More use of tracking
 - Detailed analysis in search of new signals
 - Output Rate up to 10KHz
- Offline
 - Not just do as well as today but at PU 200
 - More precision to look for tiny signals of New Physics

Data Hierarchy: Our solution to BigData

"RAW, ESD, AOD, TAG" Triggered events ~2 MB/event **Detector digitisation RAW** recorded by DAQ ~9MB with Sim ~80MB at PU200 Reconstructed Pseudo-physical information: ~100 kB/event ESD/RECO information Hits, Clusters, track candidates ~2MB with Sim ~23MB at PU200 Physical information: **Analysis** Transverse momentum, ~10 kB/event (mini)AOD information Association of particles, jets, <40kB prune/compress (best) id of particles, Classification Relevant information ~1 kB/event TAG/tuple information for "fast" event selection

HEP Applications

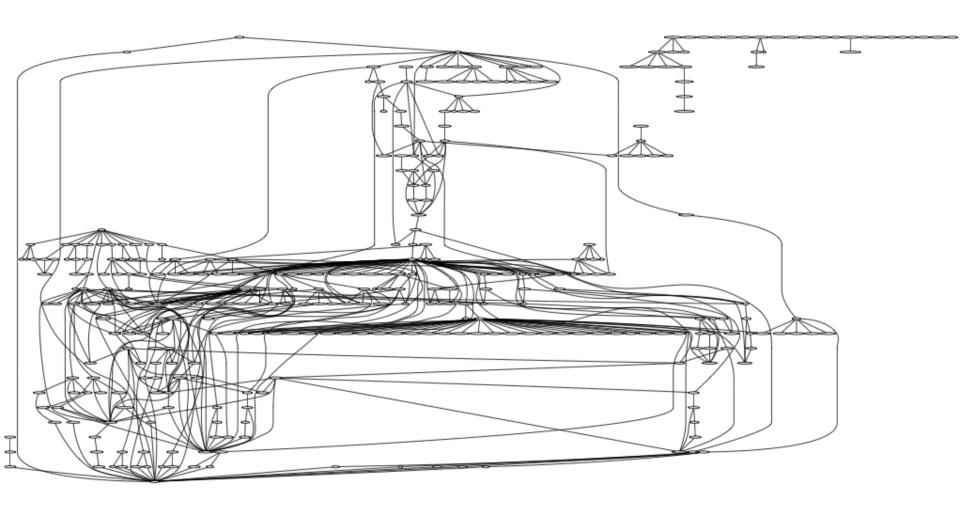


Algorithms read and write from/to the event-data store and the "services"

Only interfaces are defined (with no "cost" associated)

Algorithms are in turn based on a large set of utilities and foundation libraries

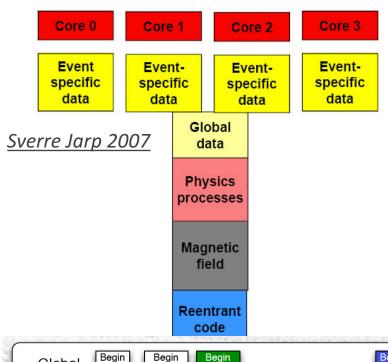
A real application (LHCb Brunel)



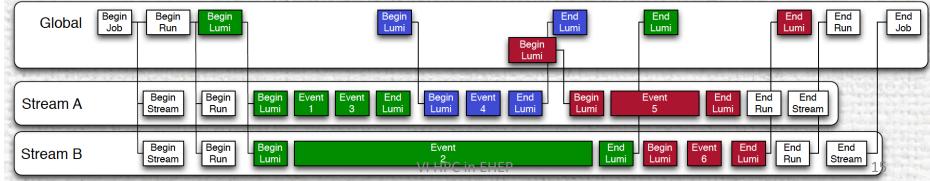
Event parallelism

Opportunity: Reconstruction Memory-Footprint shows large condition data

How to share common data between different process?

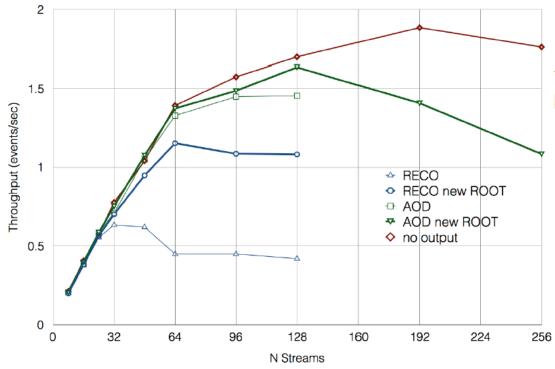


- → multi-process and multi-thread applications are now in production
- → CMS simulation and reconstruction runs on KNL with 126 threads well within the 16GB of fast memory
- →I/O remains a problem...



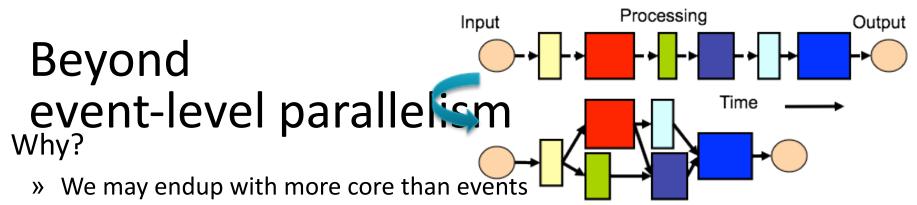
Throughput with Modified ROOT*

KNL system



* modified to allow compressing branches in one TTree in parallel

 Goal: maximize throughput for a given memory budget. Trivial parallelism is still the best parallelism but that strategy is limited by memory.



- » Resources (shared access to memory, to disk) may be scarce
 - Typical example is a KNL used as a cluster of ~256 cpus
- Parallelize a DAG workflow is relatively easy including the management of a mild overcommit to mitigate starvation issues
 - » All concurrent framework implements it (or plan to implement it)
 - » To work well it requires a reasonably balanced workflow:
 - a single long pipeline may easily defeat its purpose!
 - » Iterative tracking is the most striking example of long pipeline (50% of reco time spent in it for CMS...)
- NB: up to this point data-processing is fully reproducible independently of the order of execution and granularity of concurrency

Outer loop parallelization

- Typically each processing module has an "outer loop" on its input collection
 - The most trivial concurrency model is to parallelize it
 - "For loop" parallelization is a well established practice
 - Challenge: synchronize with outer scheduler...
- In CMS proven to work "almost" out of the box for both seed and track building
 - Seed building is fully combinatorial, no reproducibility issues
 - Track building includes "cleaning passes" to remove already used hits
 - Introduces a sequential dependency and therefore an irreproducibility in case of parallel processing
- Current implementation
 - Avoid "cleaning" and pay the price

In-Out parallelization

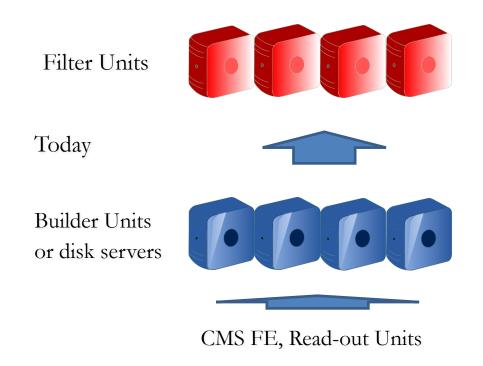
- Out-In parallelization will allow to overcome the limitation of traditional batch processing. Exploiting new (heterogeneous) concurrent hardware (SIMD/SIMT) will require a completely new approach, most probably a full rethinking of algorithms, data structures and even of the workflow decomposition
- By definition SIMD/SIMT applies to the innermost loop
 - Either directly or by code transformation
- w/r/t multi-threading, effective concurrency is "broken" in SIMD/SIMT by pretty common patterns such as
 - Branch predication
 - Random memory access
 - Recursion
- SIMD/SIMT algorithms are fragile
 - Supporting a new use case (even adding some protections or a minor variant) may destroy efficient parallelism
 - Often better to duplicate code and/or to partition data and manage conditionals at a higher level (which is not necessarily a bad thing even in general!)
 - Runtime polymorphism is out-of-question: has to be managed outside.
- Mitigation strategies do exist, still for a full efficient use of these architectures a dedicated, specialized software effort is required
 - Think parallel
 - Think local

Making the code SIMD/SIMT friendly

- Several "success stories" in CMS: pattern very similar
 - Transform storage representation in algorithm specific data
 - SOA to AOS, variable transformation, sorting, filtering, re-indexing etc
 - Move all constant components outside
 - Devirtualize, Use explicit RTTI, inline
 - Move from generic to specific
 - Limit the number of use-cases to the few known
 - Make functions to act on collections not on single objects
- The net effect is a significant speed up just from such code transformation
 - In many cases vectorization itself adds little
 - Short inner loops
 - Little computations
 - Branch predication

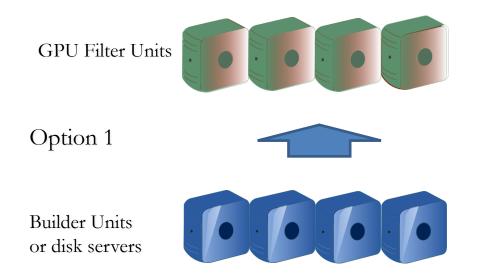
Integration in the Cloud and/or HLT Farm

- Different possible ideas depending on :
 - the fraction of the events running tracking
 - other parts of the reconstruction requiring a GPU



Integration in the Cloud/Farm

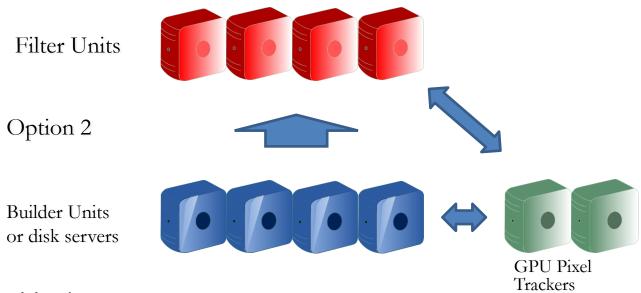
- Every FU is equipped with GPUs
 - tracking for every event



- Rigid design
 - + easy to implement
 - Requires common acquisition, dimensioning etc

Integration in the Cloud/Farm

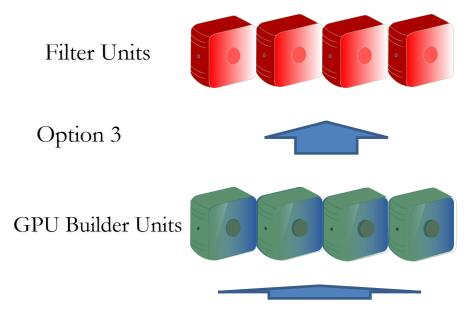
- A part of the farm is dedicated to a high density GPU cluster
- Tracks (or other physics objects like jets) are reconstructed on demand



- Flexible design
 - + Exandible, easier to balance
 - Requires more communication and software development

Integration in the HLT Farm

- Builder units are equipped with GPUs:
 - events with already reconstructed tracks are fed to FUs with GPUDirect
 - Use the GPU DRAM in place of ramdisks for building events.



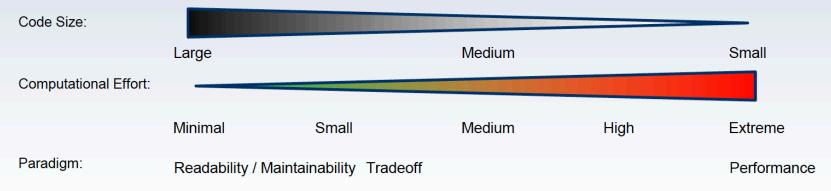
- Very specific design
- CMS FE, Read-out Units
- + fast, independent of FU developments, integrated in readout
- Requires specific DAQ software development: GPU "seen" as a detector element

CMS simulation & data processing Software "Legacy"

- ~10k "modules"
- ~1000 "data processing" modules
- Code (SLOC)
 - C++: 3,558,032 (68.86%)
 - python: 1,240,801 (24.02%)
 - Used only in initialization
 - fortran: 277,857 (5.38%)
 - Interface to physics simulation code
- Total size of TEXT sections: 229,246,680 bytes
 - + ~220MB of "external software"

Code optimization goals – Lessons learned from Run 1 / 2

Majority of the code executed very infrequently Computational hotspots located in small limited parts of the code Different paradigms relevant for different portions of the code



- New hardware for reconstruction will be heterogeneous
- At least some kind of "standard" processor will be able to execute legacy code
- Some dedicated hardware for high performance code will be present, possibly posing certain constraints.

Motivation : General Approach

27

Aproach: Split code in two categories:

- Conventional code: up to high computational effort
- Kernel Code: real computational hotspots

Apply different paradigms:

- · Conventional code must be readable and maintainable
- · A good portion of conventional code must be fast, but should remain understandable
- Kernel code will be optimized as far as possible
- Maintainability of kernel code stems primarily from small code size and good documentation, not necessarily from readability (although readable code is preferred of course)
- From our experience, the really compute intense TPC reconstruction has not been updated that often after we start operation.

Computational Effort:	Majority of Code				Kernel Code
	Minimal	Small	Medium	High	Extreme

Conclusions

- Free lunch is over
 - To improve the efficiency of software we need to increase the granularity of parallelism, optimize data access patterns and make use of heterogeneous resources
- Waiting for the definitive standard to emerge we need to develop our own infrastructure to support the implementation of concurrent algorithms able to exploit parallelism on heterogeneous hardware
- Recent work shows that
 - An efficient concurrent schedule of algorithms is feasible
 - With huge effort it is possible to make current algorithm implementations free from data-race (thread safe)
 - Making use of parallelism in algorithms requires a total reimplementation
- More R&D is required to tackle the challenges of
 - Exploiting heterogeneity
 - Efficient parallelize algorithms
 - Efficient utilization of memory hierarchy
 - Efficient utilization of the few developers left

VI HPC in EHEP

28

BACKUP

The real issue: maximize throughput Theoretical peak throughput: the maximum amount of data that a kernel can read and produce in the unit time.

Throughput_{peak} (GB/s) = 2 x access width (byte) x mem_freq (GHz)

This means that if your device comes with a memory clock rate of 3GHz DDR (double data rate) and a 384-bit wide memory interface, the amount of data that a kernel can process and produce in the unit time is at most:

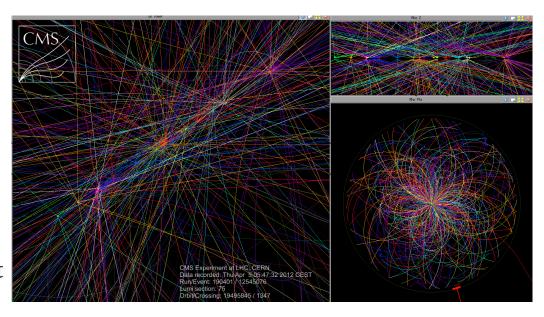
Throughput_{peak} (GB/s) = $2 \times (384/8)$ (byte) $\times 3$ (GHz) = **288 GB/s**

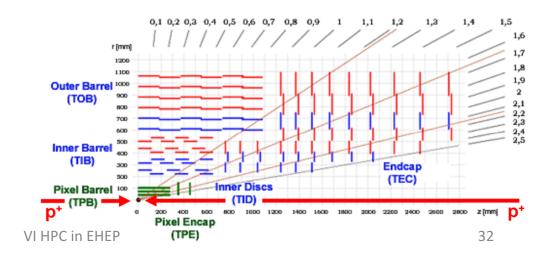
Consequence: cpu starvation!

- NVIDIA TESLA Kepler K40:
 - 1.4 TFLOPS DPFP peak throughput
 - 288 GB/s peak off-chip memory access bandwidth
 - 36 G DPFP operands per second
- In order to achieve peak throughput, a program must perform 1,400/36 = ~39 **DPFP** arithmetic operations for each operand value fetched from off-chip memory
 - In most of current code is **0.5** (fetch two operands, never use them again)!

Tracking at CMS

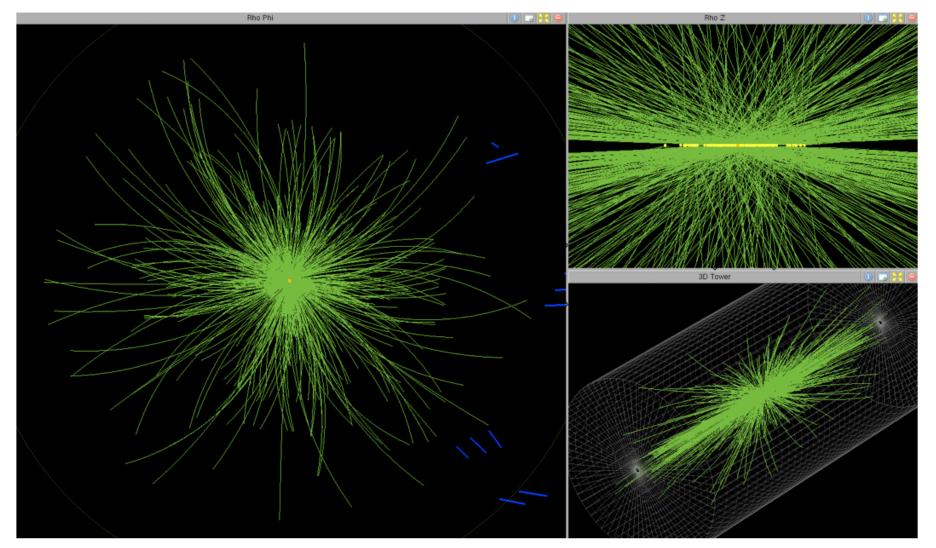
- Particles produced in the collisions leave traces (hits) as they fly through the detector
- The innermost detector of CMS is called **Tracker**
- **Tracking**: the art of associate each hit to the particle that left it
- The collection of all the hits left by the same particle in the tracker along with some additional information (e.g. momentum, charge) defines a track
- **Pile-up**: # of p-p collisions per bunch crossing

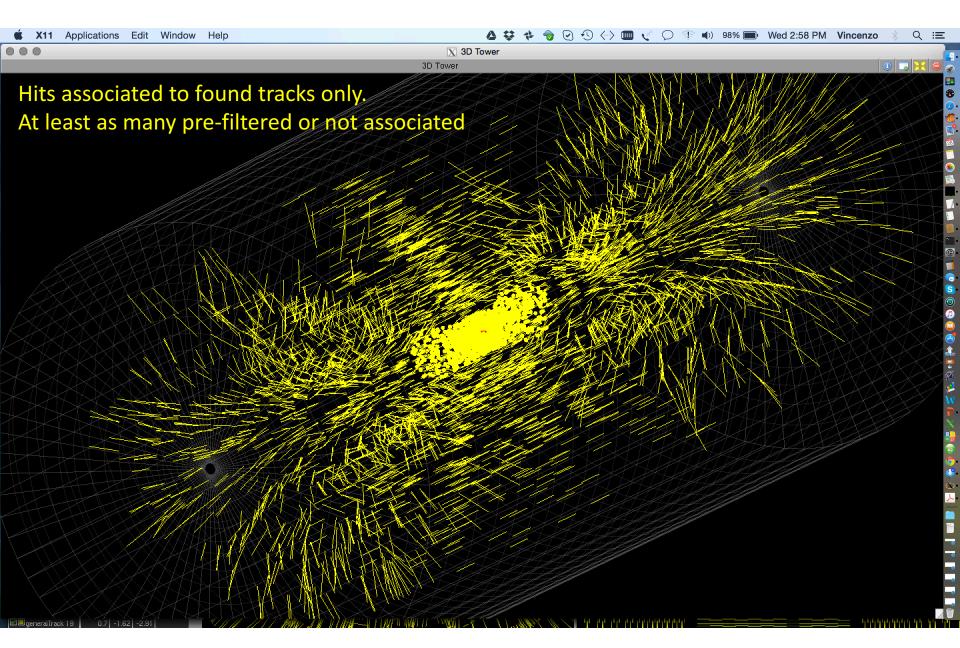




Reconstruction of CMS Simulated Event

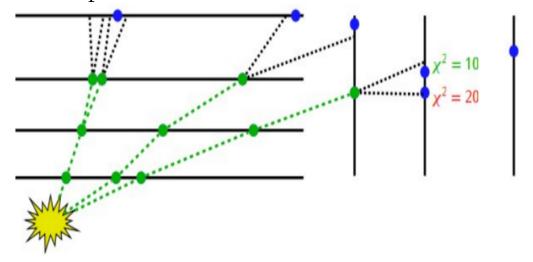
tt event at <PU>=140 (94 vertices, 3494 tracks)





Traditional track building

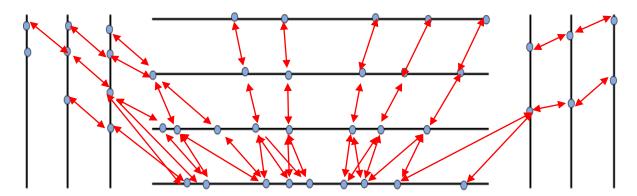
- 1. Build doublets
- 2. "Propagate" doublets to third layer and search for compatible hits (open search window on target layer)
- 3. Propagate 1-2-3 triplet to 4th layer and search for compatible hits



Highly divergent code, optimized to bail out asap. Easy to parallelize "Outermost Loop", amost impossible to vectorize

Cellular Automaton (CA)

- The CA is a track seeding algorithm designed for parallel architectures
- It requires a list of layers and their pairings
 - A graph of all the possible connections between layers is created
 - Doublets aka Cells are created for each pair of layers (compatible with a region hypothesis)
 - Doublet building identical to traditional approach
 - "Connect" cells that share hit
 - Fast computation of the compatibility between two connected cells
 - Vectorized loop of floating point operations
 - No knowledge of the world outside adjacent neighboring cells required, making it easy to parallelize



Current Performance

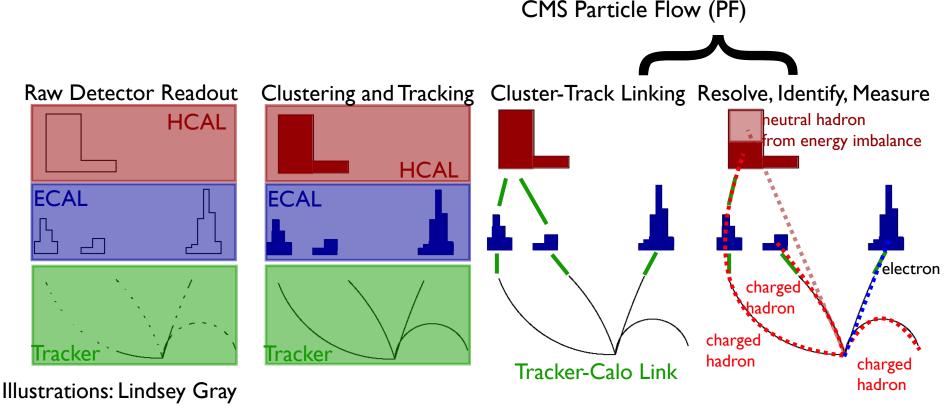
 Plan to use Cellular Automaton in its sequential implementation at the HLT already in 2017

Algorithm	time per event [ms]		
Traditional Triplets	29		
Traditional Quadruplets	72		
CPU Cellular Automaton	14		
GPU Cellular Automaton	1.2		

On GPU CA is Memory-Bandwidth limited (on CPU as well...)

Hardware: Intel Core i7-4771@3.5GHz , NVIDIA GTX 1080

Reconstructing Jet Constituents

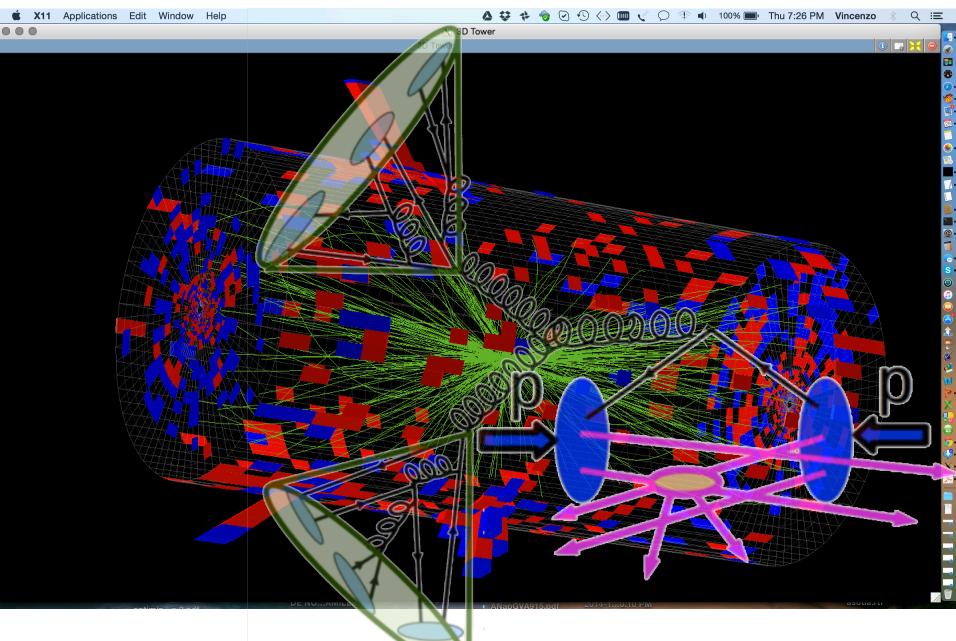


Non trivial regression to compute best estimation of particle energy combining all available information taking into account non-uniformity in detector response

Based on intensive, iterative statistical analysis of data themselves to extract alignment and calibration constants

VI HPC in EHEP

38



Actual granularity of red towers is ~100 times finer

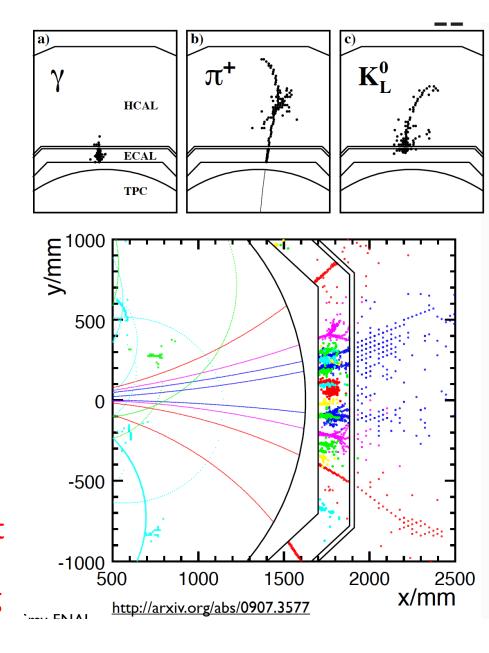
The dream of every experimental HEP Physicist:

Identify and measure each single particle produced in a collision

This may need high resolution calorimetry that will compete with trackers in complexity and data volume

Still, using current data-processing approach, most of this information will reach the physicists only in a very condensed form

Difficult to estimate the real impact of such a detector on physics analysis w/o a new data-processing paradigm

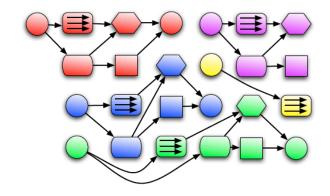


Big Question

- Can a "new" Paradigm make the difference?
 - Artificial Intelligence
 - Used already for classification
 - Dedicated Specialized Hardware
 - In use in First Level Trigger since ever
 - CMS Track trigger demonstrated with latency < 4us
 - Smart data mining
 - Analysis currently limited to a single data-tier level

Framework Upgrade

- We have a major project now to upgrade to a multithreaded version of our framework
 - This is called AthenaMT and is based on an evolution of the Gaudi framework that we share with LHCb
- The intention here is to have a framework which is primarily data driven
 - We exploit the fact that our data processing can be broken down
 - · Into events that are independent
 - With parallelism between reconstruction algorithms possible
 - We allow for the possibility of exploiting some parallelism within expensive algorithms
- Although we call this our multithreaded upgrade, in fact we express the workflow as a set of tasks and use a task based scheduler that manages the thread pool
 - Currently this is Intel's Threaded Building Blocks



Roughly, view each row as a thread, each colour as an event, each box as an event processing step

7