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Motivation
Addressing exascale challenges:▶ Resiliency, power, memory access,

concurrency and heterogeneous hardware.
▶ Codes/algorithms need to be flexible and

extensible to unknown architectures.
▶ Errors and faults will become more frequent

compared to current platforms.

Objectives
▶ Accurate and robust simulation even in the

presence of system faults.

▶ Assess predictive fidelity of extreme-scale
scientific simulations.

▶ High performance on “uncertain” architectures.

▶ Portable, extensible and reusable codes.

Technical Approach
▶ What?▶ Resilient preconditioner for PDEs.▶ To achieve resiliency to both soft and hard faults.
▶ How?▶ Recast the original PDE as a sampling problem.▶ Focus solely on the information available.▶ State update through resilient data manipulation.

Resilient EXtreme Scale Scientific Simulation (REXSSS) Algorithm Overview
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� Initial state
� Partition with overlapping

subdomains

� Focus on boundaries
� Define sampling range

� Sample PDE locally
� Collect samples at

intersecting boundaries

Regression stage to build maps:
y1 ≈ a + by2 + cyL
y2 ≈ d + ey1 + fyR

� yL,yR are known BC
� Solve: new state (y∗1 ,y∗2) Extends to multiple subdomains 2D workflow

Regression stage: Laplace (`1) vs Gaussian (`2)
Regression Resilience

High-dimensional boundary maps:
u(x∗) = a + bu1 + cu2 + . . .

Generate samples (some corrupted)
Run regression using collected samples

`1: robust against presence of corrupted data
`2: highly sensitive to corrupted data

1D Elliptic PDE Test
� Bit-flips inserted during sampling with probability p.
� Laplace likelihood yields resiliency to soft faults.

Ensemble runs for `1 and p = 0.003. Ensemble runs for `2 and p = 0.003.

REXSSS Implementation
Server-Client Model (SCM)

��� ���

���

��� ���

���

���

��� ���

���

������
����	


����
��

��
�

���

���

���

��� ������

� Cluster: 1 server + n clients.
� Servers:
� Communicate between each other.
� Safe data/state storage (sandboxed).

� Clients:
� Independent from one another.
� Only serve as computing units.

� Separates state from computation: reduces the overall vulnerability.
� Fault-tolerance via User Level Fault Mitigation ULFM-MPI (fault-tolerance.org).
� It aligns with the vision of future exascale architectures involving heterogeneous

and hierarchical hardware required to meet energy and cost constraints.

Currently Supported Fault Models
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What? Client dies, lost task.
How? Client ranks terminated.

What? Data corruption during communication.
How? Random bit-flips on task’s data.

What? Data corruption during computation.
How? Random bit-flips on task’s data.

ULFM-MPI and SCM: Why is this a good combination?
� Server simply continues the execution using only the clients that are alive.
� Avoid ULFM-MPI collective procedures to rebuild the client/communicators.
� Servers probe the corresponding cluster communicator using MPI ANY SOURCE to

assess whether a new message is arriving from one of the clients.

Scalability
Uncertainty due to SDCs and client failures

� 1% failed clients, SDC=0.1% total tasks (–)
� 2% failed clients, SDC=0.1% total tasks (–)
� Times normalized by smallest nominal

case: highlights scaling and overhead.
� Faulty runs show larger variability due to

random loss of resources, and additional
regression overhead to overcome silent
data corruptions (SDCs).

� Red curve has larger overhead because
the number of failed clients doubles. 650 850 1050 1400 1750 2100 2450 2800
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Scaling on Edison (NERSC)
� Of total faults: SDCs=97%, ranks failed=3.0%.
� Constant machine fault rate.
� Times normalized by smallest nominal case:

highlights scaling and overhead.
� Excellent scalability with and without faults:✓ within 95% for weak scaling.✓ within 90% for strong scaling.
� Overhead with respect to nominal case:
� a downward shift for weak scaling.
� an upward shift for strong scaling.
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Energy and Resilience
Exploit resilience for energy purposes?

� Idea: lower the energy consumption during the
sampling stage by means of voltage scaling.

� Compare three scenarios:
(A) machine running at full operational capacity/speed
(B) voltage/freq scaling on clients during sampling
(C) voltage scaling on clients during sampling

� Same problem, SC configuration, and machine.
� Servers run at full capacity to keep the state safe.
� Power consumption (P) and energy (E) over time T :

P = P̂ + CV 2f E = (P̂ + CV 2f )T .

frequency independent active power (P̂), switch
capacitance (C), voltage (V ), frequency (f ).

Energy Budget for Sampling Stage
(A) Full operational mode:
� VA, fA, ts

A = time for one task.
� For NA samples: Es

A = NA(P̂ts
A + CV 2

AfAts
A)

(B) Reduced voltage/frequency:
� VB < VA, fB < fA, ts

B = ts
A

fA
fB

.

� For NB = ⇢NA samples: Es
B = ⇢NA(P̂ts

A
fA
fB
+ CV 2

AfAts
A

f 2
B
f 2
A
)

(C) Reduced voltage:
� VC = �VA, with � < 1, fC = fA, ts

C = ts
A.

� For NC = ⇢NA samples: Es
C = ⇢NA(P̂ts

A + C�2V 2
AfAts

A).
⇢ is the oversampling needed to guard against faults.

Results g
Energy ratios for cases B,C wrt to A showing

saving regimes for different oversampling.
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