
Boundary Element Quadrature Schemes for Multi- and Many-Core Architectures

Boundary element method
The idea of the boundary element method (BEM) is to reformulate the
volume PDE as an equivalent boundary integral equation, see Figure 1.
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t [s] scalar AVX512(1) AVX512(2) AVX512(4) AVX512(8)
Vh 1.00 1.39 1.29 2.91 7.68
Kh 1.00 1.62 1.72 3.41 8.25
uh 1.00 1.52 1.54 3.71 11.84

t [s] serial 64 th. 128 th. 192 th. 256 th.
Vh 1.00 64.57 87.82 96.50 108.41
Kh 1.00 62.56 84.11 87.06 94.59
uh 1.00 63.42 81.89 78.44 86.15

Table 2. Speedup of OpenMP threaded semi-analytic assembly vs. serial
version on Intel Xeon Phi 7210 (up to 4-way hyper-threading, OpenMP
SIMD with AVX512).

t [s] scalar AVX512(1) AVX512(2) AVX512(4) AVX512(8)
Vh 1.00 2.00 3.78 6.07 7.62
Kh 1.00 1.20 2.26 3.89 5.53

Table 3. Speedup of OpenMP vectorized numerical assembly vs. scalar
version on Intel Xeon Phi 7210 (up to 8 double precision operands in
512-bit registers, 256 OpenMP threads).

t [s] serial 64 th. 128 th. 192 th. 256 th.
Vh 1.00 62.26 62.89 54.22 57.65
Kh 1.00 62.76 73.64 67.76 73.64

Table 4. Speedup of OpenMP threaded numerical assembly vs. serial
version on Intel Xeon Phi 7210 (up to 4-way hyper-threading, OpenMP
SIMD with AVX512).
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Figure 2. Assembly times of OpenMP threaded and vectorized semi-
analytic assembly vs. serial and scalar versions, respectively.
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Listing 1. Scalar (left) and vectorized (right) evaluation of the primitive
function. Masked evaluations of expensive functions are replaced by
cheaper masked evaluations of their arguments.

Listing 2. Original scalar numerical assembly.

Table 1. Speedup of OpenMP vectorized semi-analytic assembly vs.
scalar version on Intel Xeon Phi 7210 (up to 8 double precision
operands in 512-bit registers, 256 OpenMP threads).
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Figure 3. Assembly times of OpenMP threaded and vectorized numerical
assembly vs. serial and scalar versions, respectively.

Figure 1. Solving the boundary integral equation is equivalent to solving
the weak formulation of the considered scattering transmission problem.

Xeon E5-2680v3 Xeon Phi 7120P
semi-analytic numerical semi-analytic numerical

Vh 3.62 2.51 4.23 2.51
Kh 3.37 1.86 4.24 2.76
uh 4.25 --- 5.01 ---

Table 5. Speedup of the semi-analytic and numerical assembly on Intel
Xeon Phi 7210 vs. dual-socket Xeon E5-2680v3 and Xeon Phi 7120P.

BEM4I
BEM4I is a library of parallel BEM solvers developed at IT4Innovations.
The implementation has to deal with matrices of the type

To utilize modern HPC hardware we employ
• OpenMP SIMD vectorization for evaluation of singular integrals,
• OpenMP threading for local element contributions,
• MPI for BETI (with the domain decomposition ESPRESO lib.),
• offload to Intel Xeon Phi coprocessors.

Comparison of Xeon and Xeon Phi architectures
In Table 5 see the performance of BEM4I on the Knights Landing
generation of Xeon Phi compared to the earlier Knights Corner
coprocessor and multi-core dual-socket Haswell CPU. Exploitation of the
SIMD paradigm leads to almost optimal utilization of many-core CPUs.

Threading for semi-analytic evaluation
Threading is employed at the level of local element contributions. In
Table 2 and Figure 2 (left) see the speedups obtained on different
architectures. Enforcing data locality and thread private buffers leads to
optimal scaling up to tens or even hundreds of threads.

SIMD vectorization of semi-analytic evaluation
The semi-analytic assembly scheme leads to evaluation of

BEM4I employs various techniques to efficiently utilize wide SIMD
registers of modern CPUs:

• OpenMP SIMD pragmas,
• data alignment and padding,
• AoS to SoA transition for spatial coordinates, complex numbers,
• unit-strided memory loads and stores.

Avoiding expensive masked operations
In Listing 1 we hint the strategy of avoiding costly masked calls of sqrt
and log by masked evaluation of their arguments and dummy tmp3=1.0.

Performance gain obtained for the assembly of two BEM matrices Vh, Kh
and the evaluation of uh is summarized in Table 1 and Figure 2 (right).

Naïve implementation including four quadrature sums (see Listing 2) does
not allow for efficient SIMD processing. We thus employ

• collapsing of the loops into a single one,
• precomputation of data identical for all elements,
• data duplication to ensure unit-strided memory accesses.

Listing 3. Vectorized numerical assembly.

SIMD vectorization of numerical evaluation
Second option is to use a series of transformations to render the integrand
analytic. This results in 4D tensor Gauss quadrature

The optimizations lead to the code presented in Listing 3 and to the
speedups summarized in Table 3 and Figure 3 (right). The absence of
masked kernel evaluations leads to almost optimal scalability results.

Threading for numerical evaluation
OpenMP threading results in optimal speedups with respect to the serial
version, see Table 4 and Figure 3 (left).
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Figure 5. Weak scaling of BETI (heat transfer) on Salomon equipped with
dual-socket Intel Xeon E5-2680v3 (Haswell). The local problem is kept
constant while scaling up to 1728 MPI processes on 864 compute nodes.

Massively parallel BEM
The counterpart to the FETI domain decomposition method based on the
boundary element method is the boundary element tearing and
interconnecting (BETI) approach.

The local Dirichlet-to-Neumann maps are realized by the symmetric
BEM-based Steklov-Poincaré operators

BEM4I + ESPRESO = BETI
The ESPRESO library provides an interface to the hybrid domain
decomposition method (see Figure 4). The connection between ESPRESO
and BEM4I results in a massively parallel solver for large engineering
problems. See Figures 5 and 6 for weak scalability experiments.

Figure 6. Weak scaling of BETI (heat transfer) on the HLRN TDS
equipped with Intel Xeon Phi 7250 (Knights Landing). The local problem
is kept constant while scaling up to 64 MPI processes/nodes.
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Figure 4. Finite and boundary element tearing and interconnecting
methods (FETI, BETI) decompose domain into smaller subdomains
processed in parallel and glue them together by Lagrange multipliers.


