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Abstract

Non-negative matrix factorization (NMF) is one of Lhe mocl popular decomposition techniques for multivariate data. NMF is a core
method for many machine-learning related s, such as data ion, feature extraction, word embedding,
recommender systems etc. In practice, however, its application is facing challenges in recent years. These challenges stem from
the fact that the datasets available are ever-growing in size. For large datasets, NMF algorithm efficiency poses demands on data
loading and distribution into and within the available memory and on ication between i nodes.

Here we present a novel and efficient compressed NMF algorithm. Our algorithm applies a random compression scheme to dras-
tically reduce the dimensionality of the problem while preserving most of the action of the data matrix and inherently limiting
memory needs and ication load. As a our algorithm supersedes existing methods in speed but it matches the
best non-compressed algorithms in reconstruction precision.

Introduction

A common task in Machine Learning applications is to decompose a high dimensional dataset into lower dimensional feature vec-
tors. A standard method for this task is Principal Component Analysis (PCA) (Jolliffe, 2002). PCA allows to find basis vectors along
whose directions a given dataset shows biggest variance and thus to capture as much variance of the data with as few components
as possible. Independent Component Analysis (ICA) (Bell and Seijnowski, 1997) on the other hand finds basis vectors that are
statistically independent.

Non-negativity is a natural property of any count-based measurement; e.g. photon-counts in the case of images in astronomy or
medical imaging and word-counts in text analysis. The non-negativity of the data naturally proposes a decomposition into non-
negative components. PCA and ICA methods do not retain this property in the feature vectors.

The popularity of the Non-negative Matrix Factorization (NMF) approach stems essentially from three properties that distinguish
it from standard decomposition techniques. Firstly, the matrix factors are by definition non-negative, which allows their intuitive
interpretation as real underlying components within the context defined by the original data. Secondly, NMF implementations can
be easily tweaked to produce sparse results, which provide a more compact and local representation, emphasizing even more the
features based decomposition of the data. Finally, unlike other decomposition methods such as PCA or ICA, NMF does restrict
components to be orthogonal or ind d which is often desirabl

For those reasons the range of applications of NMF spans over many different fields such as:

® Astronomy and Gravitation: Blind-Deconvolution and Blind-Source-Separation.

o Neur ion and ion of neural activity.

* Recommender Systems: rating or preference prediction in business applications.
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Model and Problem Statements

For a given non-negative matrix X € R**" (d being the number of dimensions, n the number of datapoints) and a desired number
of components k << min(d, n), NMF searches for the non-negative factors A € R** and B € R™* that approximate X as:

X ~ABT. (¢]

Choosing the Frobenius norm || - || 7 of the residual matrix as our cost function, we can formulate the global optimization problem
to be solved as follows:

minimize J(A,B) =X - ABY||%
A,A>0; B,B>0

ion problem in A and B compromises the uniqgueness of the solution. The values for
of J(A, B) can be computed by means of algorithms that exploit a block-coordinate

The non- ity of this global op
A and B corresponding to a local
descent approach (Lee and Seung, 1999).

Optimization Methods

Block-coordinate descent algorithms update cyclically blocks of variables only, while keeping the remaining variables fixed. Given
that the global constraints are the cartesian product of convex sets on each block of variables, the resulting sequence is guaranteed
to converge to a stationary point (Bertsekas, 1995).

Since in NMF the overall non-negativity constraints are in fact the cartesian product of the non-negativity constraints on the indi-
vidual variables, the NMF problem can be tackled in a block-coordinate descent approach. The resulting basic structure for NMF
algorithms can be formulated as follows:

loop (i)
minimize J(A) = | X — ABY||% with B fixed
AA>0

minimize J(B) = ||X — AB”||% with A fixed
B,B>0

Algorithms employing this approach are e.g. the Multiplicative Updates rule (MU) by Lee and Seung, the Active-Set-Like method
by Kim and Park or Projected Gradient De:L‘em NMF by Lin.
However, these methods are p i and associated to a slow convergence rate (Kim et al., 2014). In fact, memory
needs scale with O(dn + dk + nk) and number of computations per update with O(8dnk).

Hierarchical Optimization Methods

Cichocki and collegues (Cichocki et al., 2007 & 2009) proposed two hierarchical alternating least squares (HALS) algorithms that
reduce the block size in the block-coordinate descent NMF approach to an individual column a; of A and b; of B, leading to the
following overall optimization algorithm:

loop (i & j)
minin;im JX](a )= 1”)((1) - a]b',lvH} for fixed b; ,
aj,aj20

rmmm\ze J ( ;) = HX(/) - a]bTHp for fixed a;,

b,

where XU = "X — ;b7
i
The two algorithm versions, HALS and FastHALS, provide more accurate reconstructions with a higher convergence rate. Their
computation time now scales respectively with O(8dnk) and O(4dnk). However, a critical issue that remains for large datasets is
that they require the entire data matrix X to be held in memory. Hence the memory needs still scale with O(dn + dk + nk).

Randomly Compressed Hierarchical Alternating Least Squares

To address the large memory of the optimization 2 aches described above, random compression steps can be intro-
duced to reduce the di lity of the optimizati bl Tepper and Sapiro (2015) apply structured random compression
by Halko et al. (201 1) to the two-block- coordmate descent approach (MU-RP). However, the reconstruction precision of the algo-
rithm d is not ble to the ones in our experience.

‘We therefore propose here to apply the structured random compression method to the HALS and FastHALS algorithms. The
method consists of the following steps:

Structured Random Compression Precompute two data projection matrices L and R:

1. Weighted Random Projection: P(X) = (XXT)" XQ, with Q € N(0, 1){"+7)*d/m and w € N

2. Compute Orthonormal Basis: Find orthonormal basis L € RU+@)*™ of P(X) and R € RO+ of P(X7) via QR-
decomposition where r,, € N* is an oversampling parameter.

Compressed HALS and fast HALS To reduce the dimensionality of the problem, the optimization steps of HALS and
fast HALS have to be modified:

loop (i & j)
mininize J9(a;) = JIXRT — a;BTRY|% = 4|1 X — a;BY||% for fixed B
= YLX — LABT|%

mlmmlze T ;) =1|X — AbT|% forfixed A

The computational complexity of the single iteration is hereby reduced to O(2dk(r + 7)) << O(4dnk) if compared to the

FastHALS algorithm. In addition to that, the memory needs for the variables required inside the optimization loop scale with
O((2(r + 7o) + k)(d 4+ n)) << O(dn + dk + nk) if compared to the standard NMF methods.

Experiments

‘We tested our new algorithm on the Olivetti Faces dataset and the 20 Newsgroup dataset. The first one is composed of faces of 40
distinct subjects with 10 images each. The images measure 64 x 64 pixels and are quantized to 256 grey levels. The second dataset
is by 20000 partitioned almost evenly across 20 newsgroup classes. In the example shown here we
extracted respectively k = 20 components for the Olivetti dataset and k = 60 for the 20 Newsgroup dataset providing a performance
comparison of our algorithm with other state-of-the art NMF algorithms.
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Figure 1: Top Right: A sample set of images from the Olivetti Faces dataset. Bottom Left: The extracted features, i.e. matrix B.
Right: The extracted image components, i.e. columns of matrix A, reshaped into images of 64 x 64 pixels.

ina rror Time per teration

Mumerical Complexty per eration

Method Complexity | Memory

S [flops] [floats]
MU 2.7-10° | 1.7-10°

o* MU-RP 1.3-107 | 3.1-10°
= HALS 2.6-10° | 1.7-10°
w HALS-RP 3.2-10" | 31.10°
FastHALS 14-10% | 1.7-10°

w FastHALS-RP | 8.6-10° | 3.1-10°

Figure 2: Performances comparison of the NMF methods applied on the Olivetti faces dataset. Top Left: iterative evolution of the
reconstruction errors. Top Right: Final reconstruction error (left) and computational time for single iteration. Bottom: Numerical
complexity and memory consumption of the NMF methods.
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Figure 3: NMF methods performances applied on the 20 Newsgroup dataset. Top Left: iterative evolution of the reconstruction
errors. Top Right: Final reconstruction error (left) and computational time for single iteration. Bottom: Numerical complexity and
memory consumption of the NMF methods.

Conclusions

‘We introduced a novel algorithm for Non-negative Matrix Factorization combining the fastest existing algorithm with a random
compression step. The NMF-method ison p d in this poster d some appealing properties of our algo-
rithm: a reduced memory consumption and numerical complexity, which are directly related to the compression factor (7 + 7,).
Moreover, the data compression step does not affect the accuracy of the data approximation matching the reconstruction preci-
sion of the best NMF algorithms. Finally, even including the calculation of the projection matrices L and R, the FastHALS-RP

algorithm finds a solution of the NMF problem ~ 2 times faster than the fastest currently existing algorithm.
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