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Introduction

Larmor point structure

Conclusion

 Numerical plasma physics models improve our understanding of transport, instability 
growth and other poorly understood phenomena encountered in the experimental devices 
edging toward viable fusion energy. Computational resources must be used as efficiently as 
possible. Here, we examine four recent features in ORB5 and demonstrate the speedup, and 
thus time and resource savings, achieved by implementing these changes in the major 
modules of PIC gyrokinetic codes.

    Introducing OpenMP resulted in a reduction of runtime by 15.9% for the test case 
presented here. There is still potential for an additional ~12% gain via OpenMP 
optimization, particularly in the field solver.
 Sorting was not found to be immediately beneficial, even with a loop-by-cell 
method. However, further exploitation of fully sorted Larmor points could lead to 
improvement. Finally, storage of particle data as structures of arrays was found to be 
important for optimization.
    With some 1-3 million node-hours potentially used for simulations by the ORB5 
community in the coming year, a 15% gain could correspond to hundreds of 
thousands euros saved. 
    Future work will evaluate multi-node runs; the improvement on GPU architecture 
and KNL; hyperthreading; and the efficiency gains for different test cases involving 
fully kinetic electrons and electromagnetic scenarios.

Model: ORB5

Structure of Arrays vs. Array of Structures

OpenMP hybrid vs. Pure MPI

Sorting

Looping by cell
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 Our next consideration after the structural change was introducing OpenMP multithreading. 
In pure MPI parallelization, ORB5 creates clones of a region for each core and distributes the 
particles among them, enabling division of work among the cores. Rather than data 
duplication, a pure OpenMP version uses shared memory while distributing the particle 
workload among threads. Here we use the multicore XC40 Intel Broadwell node partition of 
Piz Daint (CSCS). We choose how many clones/threads to use according to the formula:

 Since Broadwell nodes consist of 2 sockets, using pure OpenMP (32 threads) resulted in 
poor performance; these runs are not shown. An optimum of 8 OpenMP threads for each of 
the 4 MPI clones was found to be optimal, with a runtime reduction of 15.9%.
    Black insets indicate time when only one OpenMP thread is active; the remaining threads 
are idle. This is sometimes unavoidable, but also provides directions for future improvement.

 Typically, an array-of-structures (AoS) approach improves cache use, while a 
structure-of-arrays (SoA) approach improves SIMD efficiency. We reordered the 
Larmor point array’s indices and compared (with sorting activated). The AoS 
approach (shown below) increased runtime by 19.8% in the relevant modules, and 
11.7% overall. Charge deposition was particularly affected.
    This result indicates that memory access is more efficient when each property 
(weight, position, etc.) of all particles is stored contiguously, rather than keeping all 
information related to a specific particle adjacent.

 To improve data locality, we introduced a sort of the Larmor points into bins 
corresponding to the grid cells on which fields are calculated. Sorting was more 
effective when fewer threads were present; however, for the optimum found 
previously (8 OpenMP threads), sorting resulted in poorer performance.

 Taking advantage of sorting, we can loop cell-by-cell over all the particles found 
in each finite-element cell. This change improved performance compared to the 
sorting version, but the unsorted version remained most effective.

Solve for fields

Push particle positions

Deposit charge inform-
ation on field grid

Interpolate fields at
particle positions

 In ORB5, the “guiding center” of a particle is tracked rather than 
explicitly tracking the particles’ gyrations around the magnetic field. 
(This is the gyrokinetic approximation). However, for charge 
deposition and field interpolation, the orbit must be sampled. Since 
this occurs at least twice and is computationally expensive, we 
introduce a “Larmor point structure” in which quantities related to 
the points along the orbit are stored. This restructuring actually 
worsens runtime, increasing it by 23.9% in our test case. However, 
it is necessary for the other changes.
    The figure below demonstrates the difference in time spent in each module. All timings in 
this presentation are normalized such that the runtime of the unmodified code is 100. White 
insets indicate time when only one MPI process is active.

 ORB5 is a particle-in-cell (PIC) delta-f gyrokinetic code. It solves for the electric (and 
magnetic in the case of fully electromagnetic simulations) fields on a finite-element grid using 
splines up to 3rd order. Additional features include noise control, collisions, and sources.
 Each timestep broadly involves four steps: using particles to track the location of charge 
and current; using this information to solve for the electric and magnetic fields; interpolating 
the new fields at the particles’ location; and determining the change in the particles’ position 
and velocity due to the fields.
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