
Numerical method optimization in
particle-in-cell gyrokinetic plasma code ORB5

A. Scheinberg,* E. Lanti, N. Ohana, L. Villard, S. Brunner
Swiss Plasma Center, Ecole polytechnique fédérale de Lausanne, Switzerland

Introduction

Larmor point structure

Conclusion

 Numerical plasma physics models improve our understanding of transport, instability
growth and other poorly understood phenomena encountered in the experimental devices
edging toward viable fusion energy. Computational resources must be used as efficiently as
possible. Here, we examine four recent features in ORB5 and demonstrate the speedup, and
thus time and resource savings, achieved by implementing these changes in the major
modules of PIC gyrokinetic codes.

 Introducing OpenMP resulted in a reduction of runtime by 15.9% for the test case
presented here. There is still potential for an additional ~12% gain via OpenMP
optimization, particularly in the field solver.
 Sorting was not found to be immediately beneficial, even with a loop-by-cell
method. However, further exploitation of fully sorted Larmor points could lead to
improvement. Finally, storage of particle data as structures of arrays was found to be
important for optimization.
 With some 1-3 million node-hours potentially used for simulations by the ORB5
community in the coming year, a 15% gain could correspond to hundreds of
thousands euros saved.
 Future work will evaluate multi-node runs; the improvement on GPU architecture
and KNL; hyperthreading; and the efficiency gains for different test cases involving
fully kinetic electrons and electromagnetic scenarios.

Model: ORB5

Structure of Arrays vs. Array of Structures

OpenMP hybrid vs. Pure MPI

Sorting

Looping by cell

*Corresponding author. Contact: aaron.scheinberg@epfl.ch

 Our next consideration after the structural change was introducing OpenMP multithreading.
In pure MPI parallelization, ORB5 creates clones of a region for each core and distributes the
particles among them, enabling division of work among the cores. Rather than data
duplication, a pure OpenMP version uses shared memory while distributing the particle
workload among threads. Here we use the multicore XC40 Intel Broadwell node partition of
Piz Daint (CSCS). We choose how many clones/threads to use according to the formula:

 Since Broadwell nodes consist of 2 sockets, using pure OpenMP (32 threads) resulted in
poor performance; these runs are not shown. An optimum of 8 OpenMP threads for each of
the 4 MPI clones was found to be optimal, with a runtime reduction of 15.9%.
 Black insets indicate time when only one OpenMP thread is active; the remaining threads
are idle. This is sometimes unavoidable, but also provides directions for future improvement.

 Typically, an array-of-structures (AoS) approach improves cache use, while a
structure-of-arrays (SoA) approach improves SIMD efficiency. We reordered the
Larmor point array’s indices and compared (with sorting activated). The AoS
approach (shown below) increased runtime by 19.8% in the relevant modules, and
11.7% overall. Charge deposition was particularly affected.
 This result indicates that memory access is more efficient when each property
(weight, position, etc.) of all particles is stored contiguously, rather than keeping all
information related to a specific particle adjacent.

 To improve data locality, we introduced a sort of the Larmor points into bins
corresponding to the grid cells on which fields are calculated. Sorting was more
effective when fewer threads were present; however, for the optimum found
previously (8 OpenMP threads), sorting resulted in poorer performance.

 Taking advantage of sorting, we can loop cell-by-cell over all the particles found
in each finite-element cell. This change improved performance compared to the
sorting version, but the unsorted version remained most effective.

Solve for fields

Push particle positions

Deposit charge inform-
ation on field grid

Interpolate fields at
particle positions

 In ORB5, the “guiding center” of a particle is tracked rather than
explicitly tracking the particles’ gyrations around the magnetic field.
(This is the gyrokinetic approximation). However, for charge
deposition and field interpolation, the orbit must be sampled. Since
this occurs at least twice and is computationally expensive, we
introduce a “Larmor point structure” in which quantities related to
the points along the orbit are stored. This restructuring actually
worsens runtime, increasing it by 23.9% in our test case. However,
it is necessary for the other changes.
 The figure below demonstrates the difference in time spent in each module. All timings in
this presentation are normalized such that the runtime of the unmodified code is 100. White
insets indicate time when only one MPI process is active.

 ORB5 is a particle-in-cell (PIC) delta-f gyrokinetic code. It solves for the electric (and
magnetic in the case of fully electromagnetic simulations) fields on a finite-element grid using
splines up to 3rd order. Additional features include noise control, collisions, and sources.
 Each timestep broadly involves four steps: using particles to track the location of charge
and current; using this information to solve for the electric and magnetic fields; interpolating
the new fields at the particles’ location; and determining the change in the particles’ position
and velocity due to the fields.

0 20 40 60 80 100 120
Wall clock time (normalized)

Time loop timings

32 clones 1 threads

16 clones 2 threads

8 clones 4 threads

4 clones 8 threads

2 clones 16 threads

27.8

18.8

14.7

12.9

11.9

16.7

15.6

15.0

15.5

18.6

3.0

3.3

3.8

3.6

3.3

3.6

3.1

18.5

20.1

20.1

18.6

20.6

5.0

4.7

4.4

4.2

4.1

5.4

6.1

7.9

10.3

15.6

9.7

7.6

6.9

7.7

10.0

18.2

10.0

9.4

10.9

15.1

 109.3

 90.6

 86.1

 87.6

 103.3

Solve for fields
Interpolate fields at larmor points
Unsort Larmor points
Gyroaverage fields

Push particle positions
Determine number of larmor points
Compute Larmor point positions

Sort Larmor points
Deposition charge/current
Other

0 20 40 60 80 100
Wall clock time (normalized)

Time loop timings

32 clones 1 threads

16 clones 2 threads

8 clones 4 threads

4 clones 8 threads

2 clones 16 threads

27.7

18.7

14.7

12.9

11.9

17.1

22.1

21.7

21.4

21.3

3.0

3.1

3.7

3.5

3.3

3.6

3.1

18.5

20.2

20.0

18.4

21.0

5.0

4.7

4.4

4.3

4.1

5.4

6.1

8.0

10.2

15.5

11.7

9.0

8.5

9.2

10.7

11.1

10.0

9.6

10.2

15.0

 104.7

 98.4

 94.6

 93.9

 106.9

0 20 40 60 80 100 120
Wall clock time (normalized)

Time loop timings

32 clones 1 threads

16 clones 2 threads

8 clones 4 threads

4 clones 8 threads

2 clones 16 threads

27.7

18.8

14.7

12.9

11.9

16.1

15.0

14.5

15.0

17.9

8.1

8.3

8.4

8.1

7.9

3.6 18.5

20.3

19.9

18.6

20.8

4.7

4.3

4.0

3.9

3.7

11.1

11.5

12.3

14.2

19.5

9.8

7.4

7.2

7.7

9.8

22.8

10.9

11.4

12.9

14.7

 123.8

 100.9

 96.2

 96.9

 110.3

0 20 40 60 80 100 120 140
Wall clock time (normalized)

Time loop timings

32 clones 1 threads

16 clones 2 threads

8 clones 4 threads

4 clones 8 threads

2 clones 16 threads

27.7

18.8

14.8

12.9

12.0

35.8

31.3

24.9

20.7

20.3

3.4 18.5

20.3

20.1

18.4

20.8

5.2

4.9

4.5

4.2

4.1

25.5

13.7

13.1

14.0

15.5

11.0

10.2

13.1

10.0

14.8

 128.6

 103.3

 94.3

 84.1

 91.5

0 20 40 60 80 100 120
Wall clock time (normalized)

Time loop timings

Larmor point method

Gyrocenter method

27.7

27.8

35.3 3.4 18.7

40.5

4.9 15.8

20.0

16.7

11.8

 123.9

 100.0

Solve for fields
Interpolate fields at larmor points
Gyroaverage fields

Push particle positions
Determine number of larmor points
Compute Larmor point positions

Deposition charge/current
Other

Solve for fields
Interpolate fields at larmor points
Gyroaverage fields

Push particle positions
Determine number of larmor points
Compute Larmor point positions

Deposition charge/current
Other

Solve for fields
Interpolate fields at larmor points
Unsort Larmor points
Gyroaverage fields

Push particle positions
Determine number of larmor points
Compute Larmor point positions

Sort Larmor points
Deposition charge/current
Other

L1

L2

L3

Ln

GC

B

(#MPI clones) x (#OpenMP threads) = (#Cores total)

